精英家教网 > 高中数学 > 题目详情
19.已知双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>b>0)的离心率等于2,则双曲线的渐近线与圆(x-2)2+y2=3的位置关系是(  )
A.相离B.相切C.相交D.不确定

分析 运用离心率公式,即a,b,c的关系,可得b=$\sqrt{3}$a,求得渐近线方程,圆心到直线的距离与半径比较即可得到所求关系.

解答 解:由题意可得e=$\frac{c}{a}$=$\frac{\sqrt{{a}^{2}+{b}^{2}}}{a}$=2,
化为b=$\sqrt{3}$a,
双曲线的渐近线方程为y=±$\frac{b}{a}$x,
即为y=±$\sqrt{3}$x,
圆(x-2)2+y2=3的圆心为(2,0),半径为$\sqrt{3}$,
圆心到直线的距离为$\frac{|2\sqrt{3}|}{\sqrt{1+3}}$=$\sqrt{3}$,
则渐近线与圆相切.
故选B.

点评 本题考查双曲线的方程和性质:离心率和渐近线,考查直线和圆的位置关系,以及运算求解能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.6本不同的书,按照以下要求处理,各有几种分法?
(1)甲得一本,乙得二本,丙得三本;
(2)平均分成三堆;
(3)甲、乙、丙每人至少得一本.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.下列命题中是真命题的所有序号有(3)、(4)、(5)
(1)若$\overrightarrow{a}•\overrightarrow{b}$=$\overrightarrow{a}•\overrightarrow{c}$,则$\overrightarrow{b}$=$\overrightarrow{c}$;
(2)对空间任意点O与不共线的三点A,B,C,若$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$(x,y,z∈R),则P,A,B,C四点共面;
(3)“曲线C上的点的坐标都是方程f(x,y)=0的解”是“曲线C的方程是f(x,y)=0”的必要条件;
(4)曲线C的方程是f(x,y)=0,则曲线C关于y轴对称的曲线方程是f(-x,y)=0;
(5)($\overrightarrow{c}$•$\overrightarrow{b}$)$\overrightarrow{a}$-($\overrightarrow{a}•\overrightarrow{c}$)$\overrightarrow{b}$与$\overrightarrow{c}$垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.以直角坐标原点为极点,x轴非负半轴为极轴建立极坐标系,已知直线l的极坐标方程为:ρcos(θ-$\frac{π}{4}$)=2$\sqrt{2}$.曲线C的参数方程为:$\left\{\begin{array}{l}x=1+3cosα\\ y=3sinα\end{array}\right.$(α为参数).
(1)求直线l的直角坐标方程与曲线C的普通方程;
(2)已知直线l与曲线C相交于A、B两点,求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,b=$\sqrt{3}$,c=1,B=60°,则A=(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示,正方形ABCD所在平面与圆O所在平面相交于CD,线段CD为圆O的弦,AE垂直于圆O所在平面,垂足E是圆O上异于C,D的点,AE=3,圆O的直径CE为9.
(1)求证:CD⊥面AED;
(2)求三棱锥D-ABE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.对于函数f(x)=$\left\{\begin{array}{l}{(x-1)^{2},x≥0}\\{(x+1)^{2},x<0}\end{array}\right.$,下列结论中正确的是(  )
A.是奇函数,且在[0,1]上是减函数B.是奇函数,且在[1,+∞)上是减函数
C.是偶函数,且在[-1,0]上是减函数D.是偶函数,且在(-∞,-1]上是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知点M(a,b)在直线x+2y=$\sqrt{5}$上,则$\sqrt{{a^2}+{b^2}}$的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=cos(2x-$\frac{π}{3}$)+2sin(x-$\frac{π}{4}$)sin(x+$\frac{π}{4}$).
(1)求函数f(x)的最小正周期和图象的对称轴方程;
(2)求函数f(x)在区间[-$\frac{π}{6}$,$\frac{π}{2}$]上的最值.

查看答案和解析>>

同步练习册答案