分析 (1)由CD⊥AE,CD⊥AD即可得出CD⊥平面ADE;
(2)利用勾股定理计算正方形的边长,代入体积公式VD-ABE=VB-ADE=$\frac{1}{3}{S}_{△ADE}•AB$计算即可.
解答
证明:(1)∵AE⊥⊙O,CD?⊙O,
∴AE⊥CD,
在正方形ABCD中,CD⊥AD
又AD∩AE=A,AD?平面ADE,AE?平面ADE,
∴CD⊥面AED.
解:(2)连接AC,设正方形ABCD的边长为a,则AC=$\sqrt{2}$a,
又AC2=CE2+AE2=90,∴a=3$\sqrt{5}$.
∴DE=$\sqrt{A{D}^{2}-A{E}^{2}}$=6,
∵CD⊥面AED,AB∥CD,∴AB⊥面ADE,
∴${V_{D-ABE}}={V_{B-ADE}}=\frac{1}{3}AB•{S_{△ADE}}=\frac{1}{3}×\frac{1}{2}×3×6×3\sqrt{5}=9\sqrt{5}$.
点评 本题考查了线面垂直的判定,棱锥的体积计算,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{6}}}{2}$ | B. | $\sqrt{6}$ | C. | $\frac{{3\sqrt{6}}}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 相离 | B. | 相切 | C. | 相交 | D. | 不确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,$\frac{1}{3}$) | B. | (-∞,$\frac{1}{3}$] | C. | (0,$\frac{1}{3}$] | D. | (-∞,0)∪(0,$\frac{1}{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 在(-∞,1)上是增函数,在(1,+∞)上是增函数 | |
| B. | 减函数 | |
| C. | 在(-∞,1)上是减函数,在(1,+∞)上是减函数 | |
| D. | 增函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com