精英家教网 > 高中数学 > 题目详情
15.已知数列{an}为公差不为0的等差数列,Sn为前n项和,a5和a7的等差中项为11,且a2•a5=a1•a14.令bn=$\frac{1}{{{a_n}•{a_{n+1}}}}$,数列{bn}的前n项和为Tn.求an及Tn

分析 设等差数列{an}的公差为d,依题意,可求得数列{an}的首项与公差,从而可得其通项an;再由bn=$\frac{1}{{{a_n}•{a_{n+1}}}}$,利用裂项法可求得数列{bn}的前n项和为Tn

解答 解:因为{an}为等差数列,设公差为d,则由题意得$\left\{\begin{array}{l}{a_5}+{a_7}=22⇒2{a_1}+10d=22\\{a_2}•{a_5}={a_1}•{a_{14}}⇒({a_1}+d)({a_1}+4d)={a_1}({a_1}+13d)\end{array}\right.$,
整理得$\left\{\begin{array}{l}{a_1}+5d=11\\ d=2{a_1}\end{array}\right.⇒\left\{\begin{array}{l}d=2\\{a_1}=1\end{array}\right.$,
所以an=1+(n-1)×2=2n-1,
又${b_n}=\frac{1}{{{a_n}•{a_{n+1}}}}=\frac{1}{(2n-1)(2n+1)}=\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
所以${T_n}=\frac{1}{2}(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+…+\frac{1}{2n-1}-\frac{1}{2n+1})=\frac{n}{2n+1}$.

点评 本题考查数列的求和,着重考查解方程组求通项与裂项法求和的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.设函数f(x)=2x+3,g(x+2)=f(x),则g(2)的值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设函数f(x)=x3+($\frac{m}{2}$+2)x2-2x,(x>0),若对于任意的t∈[1,2],函数f(x)在区间(t,3)上总不是单调函数,则m的取值范围是为$(-\frac{37}{3},-9)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.通过随机调查某校高三100名学生在高二文理分科是否与性别有关,得到如下的列联表:(单位:人)
文理性别总计
选理科402060
选文科103040
总计5050100
(1)从这50名女生中按文理采取分层抽样,抽取一个容量为5的样本,问样本中文科生与理科生各多少人?
(2)从(1)中抽到的5名学生中随机选取两名访谈,求选到文科生、理科生各一名的概率;
(3)根据以上列联表,问有多大把握认为“文理分科与性别”有关?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.下列命题中是真命题的所有序号有(3)、(4)、(5)
(1)若$\overrightarrow{a}•\overrightarrow{b}$=$\overrightarrow{a}•\overrightarrow{c}$,则$\overrightarrow{b}$=$\overrightarrow{c}$;
(2)对空间任意点O与不共线的三点A,B,C,若$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$(x,y,z∈R),则P,A,B,C四点共面;
(3)“曲线C上的点的坐标都是方程f(x,y)=0的解”是“曲线C的方程是f(x,y)=0”的必要条件;
(4)曲线C的方程是f(x,y)=0,则曲线C关于y轴对称的曲线方程是f(-x,y)=0;
(5)($\overrightarrow{c}$•$\overrightarrow{b}$)$\overrightarrow{a}$-($\overrightarrow{a}•\overrightarrow{c}$)$\overrightarrow{b}$与$\overrightarrow{c}$垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设F1,F2为双曲线$\frac{x^2}{4}-{y^2}$=1的两个焦点,点P在双曲线上,且满足$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$=0,则△F1PF2的面积是(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.以直角坐标原点为极点,x轴非负半轴为极轴建立极坐标系,已知直线l的极坐标方程为:ρcos(θ-$\frac{π}{4}$)=2$\sqrt{2}$.曲线C的参数方程为:$\left\{\begin{array}{l}x=1+3cosα\\ y=3sinα\end{array}\right.$(α为参数).
(1)求直线l的直角坐标方程与曲线C的普通方程;
(2)已知直线l与曲线C相交于A、B两点,求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示,正方形ABCD所在平面与圆O所在平面相交于CD,线段CD为圆O的弦,AE垂直于圆O所在平面,垂足E是圆O上异于C,D的点,AE=3,圆O的直径CE为9.
(1)求证:CD⊥面AED;
(2)求三棱锥D-ABE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知命题p:函数f(x)=$\left\{\begin{array}{l}{a{x}^{2}+1,x≥0}\\{(a+2){e}^{ax},x<0}\end{array}\right.$为R上的单调函数,则使命题p成立的一个充分不必要条件为(  )
A.a∈(-1,0)B.a∈[-1,0)C.a∈(-2,0)D.a∈(-∞,-2)

查看答案和解析>>

同步练习册答案