| A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
分析 设|PF1|=x,|PF2|=y,根据根据双曲线性质可知x-y的值,再根据∠F1PF2=90°,求得x2+y2的值,进而根据2xy=x2+y2-(x-y)2求得xy,进而可求得∴△F1PF2的面积.
解答 解:设|PF1|=x,|PF2|=y,(x>y)
双曲线$\frac{x^2}{4}-{y^2}$=1的a=2,b=1,c=$\sqrt{5}$,
根据双曲线性质可知x-y=2a=4,
∵$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$=0,
∴∠F1PF2=90°,
∴x2+y2=4c2=20,
∴2xy=x2+y2-(x-y)2=4,
∴xy=2,
∴△F1PF2的面积为$\frac{1}{2}$xy=1.
故选:A.
点评 本题主要考查了双曲线的简单性质.要灵活运用双曲线的定义及焦距、实轴、虚轴等之间的关系.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\frac{{\sqrt{2}-1}}{2}$ | C. | 2-$\sqrt{2}$ | D. | $\sqrt{2}-1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{(n+1)(n+2)}{2}$ | B. | $\frac{n(n+1)}{2}$ | C. | $\frac{n}{n+1}$ | D. | $\frac{n}{n+2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{6}}}{2}$ | B. | $\sqrt{6}$ | C. | $\frac{{3\sqrt{6}}}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com