7£®ÒÔÖ±½Ç×ø±êÔ­µãΪ¼«µã£¬xÖá·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÒÑÖªÖ±ÏßlµÄ¼«×ø±ê·½³ÌΪ£º¦Ñcos£¨¦È-$\frac{¦Ð}{4}$£©=2$\sqrt{2}$£®ÇúÏßCµÄ²ÎÊý·½³ÌΪ£º$\left\{\begin{array}{l}x=1+3cos¦Á\\ y=3sin¦Á\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£®
£¨1£©ÇóÖ±ÏßlµÄÖ±½Ç×ø±ê·½³ÌÓëÇúÏßCµÄÆÕͨ·½³Ì£»
£¨2£©ÒÑÖªÖ±ÏßlÓëÇúÏßCÏཻÓÚA¡¢BÁ½µã£¬Çó|AB|µÄÖµ£®

·ÖÎö £¨1£©½«Ô­¼«×ø±ê·½³ÌÖеÄÈý½Çº¯Êýʽչ¿ªºóÁ½±ßͬ³ËÒԦѺ󻯳ÉÖ±½Ç×ø±ê·½³Ì£¬ÔÙÀûÓÃÖ±½Ç×ø±ê·½³Ì½øÐÐÇó½â¼´µÃ£®Ö±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£»ÏûÈ¥²ÎÊýµÃµ½ÇúÏßCµÄÆÕͨ·½³Ì£»
£¨2£©Çó³öÔ²Ðĵ½Ö±ÏߵľàÀ룬¿ÉµÃ|AB|µÄÖµ£®

½â´ð ½â£º£¨1£©½«Ô­¼«×ø±ê·½³Ì¦Ñcos£¨¦È-$\frac{¦Ð}{4}$£©=2$\sqrt{2}$»¯Îª£º¦Ñcos¦È+¦Ñsin¦È=4£¬
»¯³ÉÖ±½Ç×ø±ê·½³ÌΪ£ºx+y-4=0£¬
ÇúÏßCµÄ²ÎÊý·½³ÌΪ£º$\left\{\begin{array}{l}x=1+3cos¦Á\\ y=3sin¦Á\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬ÆÕͨ·½³Ì£¨x-1£©2+y2=9£®
£¨2£©Ô²Ðĵ½Ö±ÏߵľàÀëd=$\frac{3}{\sqrt{2}}$£¬
¡à|AB|=2$\sqrt{9-\frac{9}{2}}$=3$\sqrt{2}$£®

µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢ÏÒ³¤¹«Ê½£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Ò»ÎïÌåÒÔËÙ¶Èv£¨t£©=3t2-2t+3×öÖ±ÏßÔ˶¯£¬ËüÔÚt=1µ½t=3Õâ¶Îʱ¼äÄÚµÄÎ»ÒÆÊÇ£¨¡¡¡¡£©
A£®27B£®24C£®6D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖªÖ±Ïßl£ºy=2x+3±»ÍÖÔ²$C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$½ØµÃµÄÏÒ³¤Îª7£¬ÔòÏÂÁÐÖ±ÏßÖб»ÍÖÔ²C½ØµÃµÄÏÒ³¤Ò»¶¨Îª7µÄÓУ¨¡¡¡¡£©
¢Ùy=2x-3
¢Úy=2x+1
¢Ûy=-2x-3
¢Üy=-2x+3£®
A£®1ÌõB£®2ÌõC£®3ÌõD£®4Ìõ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªÊýÁÐ{an}Ϊ¹«²î²»Îª0µÄµÈ²îÊýÁУ¬SnΪǰnÏîºÍ£¬a5ºÍa7µÄµÈ²îÖÐÏîΪ11£¬ÇÒa2•a5=a1•a14£®Áîbn=$\frac{1}{{{a_n}•{a_{n+1}}}}$£¬ÊýÁÐ{bn}µÄǰnÏîºÍΪTn£®Çóan¼°Tn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖª²»µÈʽax2-bx+2£¼0µÄ½â¼¯Îª{x|1£¼x£¼2}£¬Ôòa+b=4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÔÚ¡÷ABCÖУ¬c=3£¬A=45¡ã£¬C=60¡ã£¬Ôòa=£¨¡¡¡¡£©
A£®$\frac{{\sqrt{6}}}{2}$B£®$\sqrt{6}$C£®$\frac{{3\sqrt{6}}}{2}$D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑ֪˫ÇúÏß$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂʵÈÓÚ2£¬ÔòË«ÇúÏߵĽ¥½üÏßÓëÔ²£¨x-2£©2+y2=3µÄλÖùØÏµÊÇ£¨¡¡¡¡£©
A£®ÏàÀëB£®ÏàÇÐC£®ÏཻD£®²»È·¶¨

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®º¯Êýy=$\frac{\sqrt{1-3x}}{2x}$µÄ¶¨ÒåÓòΪ£¨¡¡¡¡£©
A£®£¨-¡Þ£¬$\frac{1}{3}$£©B£®£¨-¡Þ£¬$\frac{1}{3}$]C£®£¨0£¬$\frac{1}{3}$]D£®£¨-¡Þ£¬0£©¡È£¨0£¬$\frac{1}{3}$]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®Èôx2-x-2=0£¬Ôò$\frac{{{x^2}-x+2\sqrt{3}}}{{{{£¨{x^2}-x£©}^2}-1+\sqrt{3}}}$µÄÖµµÈÓÚ$\frac{2\sqrt{3}}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸