精英家教网 > 高中数学 > 题目详情
若m是2和8的等比中项,则椭圆x2+
y2
m
=1
的离心率是(  )
A、
3
2
B、
5
C、
3
2
5
D、
3
2
5
2
考点:椭圆的简单性质
专题:圆锥曲线的定义、性质与方程
分析:由方程x2+
y2
m
=1
是椭圆方程求得m的范围,再由m是2和8的等比中项求得m的值,得到椭圆的长半轴长和半焦距,代入离心率公式得答案.
解答: 解:由x2+
y2
m
=1
为椭圆方程,得m>0且m≠1,
又m是2和8的等比中项,
∴m2=2×8=16,m=4.
即a2=4,b2=1,c2=a2-b2=3,
则a=2,c=
3

e=
c
a
=
3
2

故选:A.
点评:本题考查了椭圆的标准方程,考查了椭圆的简单几何性质,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

实数a,b,c分别满足2a=log 
1
2
a,(
1
2
b=log 
1
2
b,(
1
2
c=log2c,则其大小关系为(  )
A、a<b<c
B、c<b<a
C、a<c<b
D、b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的方程为x2+y2-2x+4y=0,直线l:2x-y+t=0.
(1)若直线l与圆C相切,求实数t的取值;
(2)若直线l与圆C相交于M,N两点,且|MN|=
15
,求实数t的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平行六面体ABCD-A1B1C1D1中,底面ABCD是边长为1的正方形.AA1=2,∠A1AB=∠A1AD=120°.
(1)求线段AC1的长;
(2)求异面直线AC1与A1D所成角的余弦值;
(3)证明:AA1⊥BD.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2分别为双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左右焦点,如果双曲线上存在一点P,使得F2关于直线PF1的对称点恰在y轴上,则该双曲线的离心率e的取值范围为(  )
A、e>
2
3
3
B、1<e<
2
3
3
C、e>
3
D、1<e<
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,∠ABC=60°,AB=2,BC=6,在BC上任取一点D,使△ABD为钝角三角形的概率为(  )
A、
1
6
B、
1
3
C、
1
2
D、
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C的两个焦点坐标为F1(0,-3),F2(0,3),且一个焦点到其中一条渐近线的距离为
3
2
2
,则双曲线C的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=
2-x
2+x
+
2x-2
的定义域为M.
(1)求M;
(2)当x∈M时,求函数f(x)=log2x•log2(x2)+alog2x的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的抛物线y=-
1
20
(1+k2)x2+kx(k>0,0≤x≤S)刻画的是某种炮弹发射后的飞行轨迹,其中x、y分别表示炮弹从发射点到即时位置在水平方向上和竖直方向上的位移,且其单位均为千米.炮弹的射程是指炮弹在地平面上的落地点的横坐标S,炮弹的射高是指炮弹飞行轨迹的最大高度.
(1)求当炮弹的射程为10千米时k值;
(2)求炮弹的射高关于k的函数g(k);
(3)问:是否存在k的值,使得通过适当调整炮弹的发射方位,就能击中飞行高度为5千米的飞行物.

查看答案和解析>>

同步练习册答案