6£®¸ø³öÏÂÁÐÎå¸ö½áÂÛ£º
¢ÙÔÚ¡÷ABCÖУ¬ÈôsinA£¾sinB£¬Ôò±ØÓÐcosA£¼cosB£»
¢ÚÔÚ¡÷ABCÖУ¬Èôa£¬b£¬c³ÉµÈ±ÈÊýÁУ¬Ôò½ÇBµÄȡֵ·¶Î§Îª$£¨{0£¬\frac{¦Ð}{3}}]$£»
¢ÛµÈ±ÈÊýÁÐ{an}ÖУ¬Èôa3=2£¬a7=8£¬Ôòa5=¡À4£»
¢ÜµÈ²îÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬S10£¼0ÇÒS11=0£¬Âú×ãSn¡ÝSk¶Ôn¡ÊN*ºã³ÉÁ¢£¬ÔòÕýÕûÊýk¹¹³É¼¯ºÏΪ{5£¬6}
¢ÝÈô¹ØÓÚxµÄ²»µÈʽ£¨a2-1£©x2-£¨a-1£©x-1£¼0µÄ½â¼¯ÎªR£¬ÔòaµÄȡֵ·¶Î§Îª$£¨{-\frac{3}{5}£¬1}£©$£®
ÆäÖÐÕýÈ·½áÂÛµÄÐòºÅÊǢ٢ڢܣ®£¨ÌîÉÏËùÓÐÕýÈ·½áÂÛµÄÐòºÅ£©£®

·ÖÎö ¢Ù¸ù¾ÝÕýÏÒ¶¨Àí£¬´ó±ß¶Ô´ó½Ç¿ÉµÃA£¾B£¬¸ù¾ÝÓàÏÒµÄͼÏó¿ÉµÃÃüÌâÕýÈ·£»
¢Ú¸ù¾ÝÒÑÖªµÃb2=ac£¬ÓÉÓàÏÒ¶¨Àí¿ÉµÃcosB¡Ý$\frac{1}{2}$£¬¿É½âµÃBµÄ·¶Î§£¬ÃüÌâÕýÈ·£»
¢ÛÓÉ$\left\{\begin{array}{l}{2={a}_{1}{q}^{2}}\\{8={a}_{2}{q}^{6}}\end{array}\right.$£¬½âµÃa1£¬q2£¬¿ÉµÃa5£¬²»ÕýÈ·£»
¢ÜÓÉ$\left\{\begin{array}{l}{10{a}_{1}+45d£¼0}\\{11{a}_{1}+55d=0}\end{array}\right.$£¬¼´¿ÉµÃd£¾0£¬a6=a1+5d=0£¬¿ÉµÃa1µ½a5¶¼ÊǸºÊý£¬a6ÊÇ0£¬ÒÔºó¸÷ÏîÈ«ÊÇÕýÊý£®ÒªSn¡ÝSk¶Ôn¡ÊN+ºã³ÉÁ¢£¬¿É½âµÃk=5£¬»òk=6¿ÉÖ¤ÃüÌâÕýÈ·£»
¢ÝÊ×ÏÈÌâÄ¿Óɲ»µÈʽ£¨a2-1£©x2-£¨a-1£©x-1£¼0µÄ½â¼¯ÎªR£¬ÇóʵÊýaµÄȡֵ·¶Î§£¬¿¼ÂÇת»¯Îªº¯Êýf£¨x£©=£¨a2-1£©x2-£¨a-1£©x-1£®¶ÔÈÎÒâµÄx£¬º¯ÊýֵСÓÚÁãµÄÎÊÌ⣮ÔÙ·ÖÀàÌÖÂÛa=1»òa¡Ù1µÄÇé¿ö¼´¿É½â³ö´ð°¸£®

½â´ð ½â£º¢ÙÔÚ¡÷abcÖУ¬sinA£¾sinB£¬¸ù¾ÝÕýÏÒ¶¨Àí£¬¸ù¾Ý´ó±ß¶Ô´ó½Ç¿ÉµÃA£¾B£¬¸ù¾ÝÓàÏÒµÄͼÏ󣬿ɵÃcosA£¼cosB£¬ËùÒÔÕýÈ·£»
¢Ú¸ù¾ÝÒÑÖªµÃ£ºb2=ac£¬ÓÉÓàÏÒ¶¨Àí¿ÉµÃcosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{{a}^{2}+{c}^{2}-ac}{2ac}$¡Ý$\frac{2ac-ac}{2ac}$=$\frac{1}{2}$£¬¿ÉµÃB¡Ê$£¨{0£¬\frac{¦Ð}{3}}]$£¬ËùÒÔÕýÈ·£»
¢ÛÓÉ$\left\{\begin{array}{l}{2={a}_{1}{q}^{2}}\\{8={a}_{2}{q}^{6}}\end{array}\right.$£¬½âµÃa1=1£¬q2=2£¬¿ÉµÃ£ºa5=${a}_{1}{q}^{4}$=4£¬ËùÒÔ²»ÕýÈ·£»
¢Ü½â£º¡ßSnÊǵȲîÊýÁÐ{an}µÄǰnÏîºÍ£¬S10£¼0£¬ÇÒS11=0£¬
¡à$\left\{\begin{array}{l}{10{a}_{1}+45d£¼0}\\{11{a}_{1}+55d=0}\end{array}\right.$£¬¼´$\left\{\begin{array}{l}{{a}_{1}+5d=0}\\{{a}_{1}+\frac{9}{2}d£¼0}\end{array}\right.$¢Ü£¬
¡àd£¾0£¬a6=a1+5d=0£¬
¡àa1µ½a5¶¼ÊǸºÊý£¬a6ÊÇ0£¬ÒÔºó¸÷ÏîÈ«ÊÇÕýÊý£®
¡ßSn¡ÝSk¶Ôn¡ÊN+ºã³ÉÁ¢£¬¡àk=5£¬»òk=6£®
¡àÕýÕûÊýk¹¹³ÉµÄ¼¯ºÏΪ{5£¬6}£®¹ÊÕýÈ·£»
¢Ý½â£ºÉ躯Êýf£¨x£©=£¨a2-1£©x2-£¨a-1£©x-1£®ÓÉÌâÉèÌõ¼þ¹ØÓÚxµÄ²»µÈʽ£¨a2-1£©x2-£¨a-1£©x-1£¼0µÄ½â¼¯ÎªR£®
¿ÉµÃ¶ÔÈÎÒâµÄxÊôÓÚR£®¶¼ÓÐf£¨x£©£¼0£®
ÓÖµ±a¡Ù1ʱ£¬º¯Êýf£¨x£©ÊǹØÓÚxµÄÅ×ÎïÏߣ®¹ÊÅ×ÎïÏ߱ؿª¿ÚÏòÏ£¬ÇÒÓÚxÖáÎÞ½»µã£®
¹ÊÂú×ã$\left\{\begin{array}{l}{{a}^{2}-1£¼0}\\{¡÷=£¨a-1£©^{2}+4£¨{a}^{2}-1£©£¼0}\end{array}\right.$
¹Ê½âµÃ-$\frac{3}{5}$£¼x£¼1£®
µ±a=1ʱ£®f£¨x£©=-1£®³ÉÁ¢£®
×ÛÉÏ£¬aµÄȡֵ·¶Î§Îª£¨-$\frac{3}{5}$£¬1]£®
¹Ê²»ÕýÈ·£®
¹Ê´ð°¸Îª£º¢Ù¢Ú¢Ü£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÕýÏÒ¶¨Àí£¬ÓàÏÒ¶¨Àí£¬µÈ²îÊýÁк͵ȱÈÊýÁеÄͨÏʽºÍÇóºÍ¹«Ê½µÄÓ¦Ó㬿¼²éÁ˺¯ÊýµÄÐÔÖÊÎÊÌ⣬ÆäÖÐÓ¦Óõ½º¯ÊýÔÚ²»Í¬Çø¼äµÄÖµÓò£¬¶ÔÓÚÅ×ÎïÏßÖµÓòÎÊÌâÒ»Ö±ÊǸ߿¼ÖصãÌâÐÍ£¬¶àÒÔÑ¡ÔñÌî¿ÕµÄÐÎʽ³öÏÖ£¬Í¬Ñ§ÃÇҪעÒâÕÆÎÕ£¬±¾Ìâ×ÛºÏÐÔÇ¿£¬¿¼²é֪ʶµã¶à£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®º¯Êýy=f£¨x£©µÄ×îСÕýÖÜÆÚΪ2£¬ÇÒf£¨-x£©=f£¨x£©£®µ±x¡Ê[0£¬1]ʱf£¨x£©=-x+1£¬º¯Êýy=f£¨x£©Í¼Ïó¶Ô³ÆÖá·½³Ìx=k£¨k¡ÊZ£©£¬ÔÚÇø¼ä[-3£¬4]ÉÏ£¬º¯ÊýG£¨x£©=f£¨x£©-£¨$\frac{1}{2}$£©|x|µÄÁãµã¸öÊýÓÐ6¸ö£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªSnÊÇÊýÁÐ{an}µÄǰnÏîºÍ£¬ÇÒ2an-Sn=2£¨n¡ÊN*£©£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Éèbn=log2an£¨n¡ÊN*£©£¬ÇóÊýÁÐ{a2n+bn}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªÊýÁÐ{an}µÄͨÏîan=2•3n£¬ÇóÓɯ䯿ÊýÏî×é³ÉµÄÊýÁеÄǰnÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Èô·½³Ì£¨lgx£©2-lgx2=2µÄÁ½¸ö¸ùΪ¦Á£¬¦Â£¬Ôòlog¦Á¦Â+log¦Â¦ÁµÄÖµµÈÓÚ-4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®¸´Êý$\frac{2+i}{2-i}$£¨iΪÐéÊýµ¥Î»£©µÄÐ鲿Ϊ$\frac{4}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖªÆ½ÃæÄÚÁ½¸ö·ÇÁãÏòÁ¿$\vec a£¬\vec b$»¥Ïà´¹Ö±£¬ÈôÏòÁ¿$\vec c$Âú×㣺|$\overrightarrow{a}$-$\overrightarrow{c}$|=|$\overrightarrow{b}$-$\overrightarrow{c}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|=2£¬Ôò$\overrightarrow{b}$•$\overrightarrow{c}$µÄ×î´óÖµÊÇ£¨¡¡¡¡£©
A£®1B£®2C£®$\sqrt{2}$D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖªÖ±Ïßl1£ºy=k1x+1ºÍÖ±Ïßl2=kx2+b£¬Ôòk1=k2¡±ÊÇ¡°l1¡Îl2¡±µÄ£¨¡¡¡¡£©
A£®³ä·Ö²»±ØÒªÌõ¼þB£®±ØÒª²»³ä·ÖÌõ¼þ
C£®³äÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖª¹ØÓÚxµÄ·½³Ìx2+£¨k+2i£©x+2+ki=0£®
£¨1£©ÓÐʵ¸ù£¬ÇóʵÊýk¼°Êµ¸ù£»
£¨2£©ÓÐÒ»¸ù$\frac{1}{i}$-1£¬Çók£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸