精英家教网 > 高中数学 > 题目详情
10.实数x,y满足$\left\{\begin{array}{l}{y-2x≤-2}\\{y≥1}\\{x+y≤4}\end{array}\right.$,则$\frac{{x}^{2}+{y}^{2}}{xy}$的取值范围是[2,$\frac{10}{3}$].

分析 作出不等式组对应的平面区域,利用换元法结合分式的性质,利用数形结合是解决本题的关键.

解答 解:作出不等式组对应的平面区域如图
则x>0,y>0,
则$\frac{{x}^{2}+{y}^{2}}{xy}$=$\frac{1+(\frac{y}{x})^{2}}{\frac{y}{x}}$,
设k=$\frac{y}{x}$,
则$\frac{{x}^{2}+{y}^{2}}{xy}$=$\frac{1+(\frac{y}{x})^{2}}{\frac{y}{x}}$=$\frac{1+{k}^{2}}{k}$=k+$\frac{1}{k}$.
k的几何意义为区域内的点到原点的斜率,
由图象知OA的斜率最大,OB的斜率最小,
由$\left\{\begin{array}{l}{y-2x=-2}\\{x+y=4}\end{array}\right.$,得$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$,即A(2,2),
由$\left\{\begin{array}{l}{y=1}\\{x+y=4}\end{array}\right.$得$\left\{\begin{array}{l}{x=3}\\{y=1}\end{array}\right.$,即B(3,1),
则OA的斜率k=$\frac{2}{2}$=1,OB的斜率k=$\frac{1}{3}$,
则$\frac{1}{3}$≤k≤1,
∵z=k+$\frac{1}{k}$在$\frac{1}{3}$≤k≤1上是减函数,
∴z的最大值为$\frac{1}{3}+3$=$\frac{10}{3}$,z的最小值为1+1=2,
即2≤z≤$\frac{10}{3}$,
故答案为:[2,$\frac{10}{3}$]

点评 本题主要考查线性规划的应用,根据分式函数的性质,结合直线的斜率的几何意义是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.等比数列{an}满足a1+2a2=1,a${\;}_{3}^{2}$=a5-a6
(1)求数列{an}的通项公式;
(2)设bn=log2a1+log2a2+…+log2an.求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知命题p1:函数y=($\frac{1}{2}$)x-($\frac{1}{2}$)-x在R上为减函数,p2:函数y=($\frac{1}{2}$)x+($\frac{1}{2}$)-x在R上为增函数,则在命题q1:p1∨p2,q2:p1∧p2,q3:(¬p1)∨p2和q4:p1∧(¬p2)中,真命题是(  )
A.q1,q3B.q2,q3C.q1,q4D.q2,q4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=cos(πx+φ)(0<φ<$\frac{π}{2}$)的部分图象如图所示,f(x0)=-f(0),则正确的选项是(  )
A.φ=$\frac{π}{6}$,x0=1B.φ=$\frac{π}{6}$,x0=$\frac{4}{3}$C.φ=$\frac{π}{3}$,x0=1D.φ=$\frac{π}{3}$,x0=$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.解下列不等式:
(1)|$\frac{{x}^{2}-2x+3}{x-2}$|<1
(2)|$\frac{{x}^{2}+x+1}{x-2}$|>2x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若α∈[-$\frac{π}{4},\frac{π}{4}$],β∈[-$\frac{π}{8}$,$\frac{π}{8}$],且满足$\left\{\begin{array}{l}{{α}^{3}+sinα-2k=0}\\{4{β}^{3}+sinβcosβ+k=0}\end{array}\right.$,k∈R,则cos(α+2β)的值为(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{2}$C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在下列选项中,解集为{x|x<-1或x>5}的不等式是(  )
A.(x+1)(x-5)<0B.(x-1)(x+5)<0C.(x-1)(x+5)>0D.(x+1)(x-5)>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设数列{an}满足:a1+$\frac{{a}_{2}}{2}$+$\frac{{a}_{3}}{{2}^{2}}$+…+$\frac{{a}_{n}}{{2}^{n-1}}$=2n,n∈N*
(1)求数列{an}的通项公式an
(2)设bn=${log}_{\sqrt{2}}$an,数列{anbn}的前n项和为Sn,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.化简:${C}_{n}^{1}$+2${C}_{n}^{2}$+3${C}_{n}^{3}$+…+n${C}_{n}^{n}$.

查看答案和解析>>

同步练习册答案