15£®ÒÔÖ±½Ç×ø±êϵµÄÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÒÑÖªµãMµÄÖ±½Ç×ø±êΪ£¨1£¬0£©£¬ÈôÖ±ÏßlµÄ¼«×ø±ê·½³ÌΪ$\sqrt{2}$¦Ñcos£¨¦È+$\frac{¦Ð}{4}$£©-1=0£¬ÇúÏßCµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=4{t}^{2}}\\{y=4t}\end{array}\right.$£¨tΪ²ÎÊý£©£®
£¨1£©ÇóÖ±ÏßlºÍÇúÏßCµÄÆÕͨ·½³Ì£»
£¨2£©ÉèÖ±ÏßlÓëÇúÏßC½»ÓÚA£¬BÁ½µã£¬Çó$\frac{1}{|MA|}$+$\frac{1}{|MB|}$£®

·ÖÎö £¨¢ñ£©Ö±ÏßlµÄ¼«×ø±ê·½³Ì»¯Îª¦Ñcos¦È-¦Ñsin¦È-1=0£¬ÓÉx=¦Ñcos¦È£¬y=¦Ñsin¦È£¬ÄÜÇó³öÖ±ÏßlµÄÆÕͨ·½³Ì£»ÇúÏßCµÄ²ÎÊý·½³ÌÏûÈ¥²ÎÊýÄÜÇó³öÇúÏßCµÄÆÕͨ·½³Ì£®
£¨¢ò£©µãMµÄÖ±½Ç×ø±êΪ£¨1£¬0£©£¬µãMÔÚÖ±ÏßlÉÏ£¬Çó³öÖ±ÏßlµÄ²ÎÊý·½³Ì£¬µÃµ½${t}^{2}-4\sqrt{2}t-8=0$£¬ÓÉ´ËÀûÓÃΤ´ï¶¨ÀíÄÜÇó³ö$\frac{1}{|MA|}+\frac{1}{|MB|}$µÄÖµ£®

½â´ð ½â£º£¨¢ñ£©ÒòΪ$\sqrt{2}\;¦Ñcos£¨¦È+\frac{¦Ð}{4}£©-1=0$£¬
ËùÒÔ¦Ñcos¦È-¦Ñsin¦È-1=0
ÓÉx=¦Ñcos¦È£¬y=¦Ñsin¦È£¬
µÃx-y-1=0¡­£¨3·Ö£©
ÒòΪ$\left\{\begin{array}{l}x=4{t^2}\\ y=4t\end{array}\right.$ÏûÈ¥tµÃy2=4x£¬
ËùÒÔÖ±ÏßlºÍÇúÏßCµÄÆÕͨ·½³Ì·Ö±ðΪx-y-1=0ºÍy2=4x£®¡­£¨4·Ö£©
£¨¢ò£©µãMµÄÖ±½Ç×ø±êΪ£¨1£¬0£©£¬µãMÔÚÖ±ÏßlÉÏ£¬
ÉèÖ±ÏßlµÄ²ÎÊý·½³Ì£º$\left\{\begin{array}{l}x=1+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©£¬A£¬B¶ÔÓ¦µÄ²ÎÊýΪt1£¬t2£®
${t}^{2}-4\sqrt{2}t-8=0$£¬
${t}_{1}+{t}_{2}=4\sqrt{2}£¬{t}_{1}{t}_{2}=-8$£¬¡­£¨7·Ö£©
¡à$\frac{1}{|MA|}+\frac{1}{|MB|}$=$\frac{|{t}_{1}-{t}_{2}|}{|{t}_{1}{t}_{2}|}$=$\frac{\sqrt{£¨{t}_{1}+{t}_{2}£©^{2}-4{t}_{1}{t}_{2}}}{|{t}_{1}{t}_{2}|}$=$\frac{\sqrt{32+32}}{8}$=1£®¡­£¨10·Ö£©

µãÆÀ ±¾Ð¡ÌâÖ÷Òª¿¼²é²ÎÊý·½³Ì¡¢¼«×ø±êµÈ»ù´¡ÖªÊ¶£¬¿¼²éÔËËãÇó½âÄÜÁ¦£¬¿¼²éÊýÐνáºÏ˼Ïë¡¢»¯¹éÓëת»¯Ë¼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Éèk¡ÊR£¬º¯Êýf£¨x£©=lnx-kx£®
£¨1£©Èôk=2£¬ÇóÇúÏßy=f£¨x£©ÔÚP£¨1£¬-2£©´¦µÄÇÐÏß·½³Ì£»
£¨2£©Èôf£¨x£©ÎÞÁãµã£¬ÇóʵÊýkµÄȡֵ·¶Î§£»
£¨3£©Èôf£¨x£©ÓÐÁ½¸öÏàÒìÁãµãx1£¬x2£¬ÇóÖ¤£ºlnx1+lnx2£¾2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®Òâ´óÀûÊýѧ¼ÒÁаºÄǶà•ì³²¨ÄÇÆõÒÔÍÃ×Ó·±Ö³ÎªÀý£¬ÒýÈë¡°ÍÃ×ÓÊýÁС±£º1£¬1£¬2£¬3£¬5£¬8£¬13£¬21£¬34£¬55£¬89£¬144£¬233£¬¡­£¬¼´F£¨1£©=F£¨2£©=1£¬F£¨n£©=F£¨n-1£©+F£¨n-2£©£¨n¡Ý3£¬n¡ÊN*£©£¬´ËÊýÁÐÔÚÏÖ´úÎïÀí¡¢×¼¾§Ìå½á¹¹¡¢»¯Ñ§µÈÁìÓò¶¼ÓÐ׏㷺µÄÓ¦Óã¬Èô´ËÊýÁб»3Õû³ýºóµÄÓàÊý¹¹³ÉÒ»¸öÐÂÊýÁÐ{bn}£¬b2017=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÇúÏßy=x${\;}^{\frac{1}{2}}$Óëy=x2ËùΧ³ÉµÄ·â±ÕÇøÓòµÄÃæ»ýΪ£¨¡¡¡¡£©
A£®$\frac{1}{3}$B£®$\frac{5}{12}$C£®$\frac{4}{5}$D£®$\frac{5}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Ä³Ò»¿Õ¼ä¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄ×ÀⳤΪ£¨¡¡¡¡£©
A£®2B£®$\sqrt{5}$C£®2$\sqrt{2}$D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Èçͼ£¬Íø¸ñÖ½ÉÏСÕý·½Ðεı߳¤Îª1£¬´ÖÏß»­³öµÄÊÇij¼¸ºÎÌåµÄÈýÊÓͼ£¬Ôò´Ë¼¸ºÎÌå¸÷ÃæÖ±½ÇÈý½ÇÐεĸöÊýÊÇ£¨¡¡¡¡£©
A£®2B£®3C£®4D£®5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªa£¬b£¬cΪÕýÊý£¬ÇÒa+b+c=3£¬Çó$\sqrt{3a+1}$+$\sqrt{3b+1}$+$\sqrt{3c+1}$µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑÖªÅ×ÎïÏßy2=4xÉÏÒ»µãPµ½½¹µãFµÄ¾àÀëΪ5£¬Ôò¡÷PFOµÄÃæ»ýΪ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖªiΪÐéÊýµ¥Î»£¬Ôò$\frac{1+2i}{1-i}$µÄ¹²éÊýΪ£¨¡¡¡¡£©
A£®-$\frac{1}{2}$+$\frac{3}{2}$iB£®$\frac{1}{2}$+$\frac{3}{2}$iC£®-$\frac{1}{2}$-$\frac{3}{2}$iD£®$\frac{1}{2}$-$\frac{3}{2}$i

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸