精英家教网 > 高中数学 > 题目详情
16.已知极坐标系的极点与直角坐标第的原点重合,极轴与直角坐标系的x轴的正半轴重合.点A、B的极坐标分别为(2,π)、$(a,\frac{π}{4})$(a∈R),曲线C的参数方程为$\left\{\begin{array}{l}x=1+2cosθ\\ y=2sinθ\end{array}\right.(θ$为参数)
(Ⅰ)若$a=2\sqrt{2}$,求△AOB的面积;
(Ⅱ)设P为C上任意一点,且点P到直线AB的最小值距离为1,求a的值.

分析 (1)当$a=2\sqrt{2}$时,A(-2,0),B(2,2),由于kOB=1,可得∠AOB=135°.利用S△OAB=$\frac{1}{2}|OA||OB|sin13{5}^{°}$即可得出.
(2)曲线C的参数方程为$\left\{\begin{array}{l}x=1+2cosθ\\ y=2sinθ\end{array}\right.(θ$为参数),化为(x-1)2+y2=4,圆心C(1,0),半径y=2.由题意可得:圆心到直线AB的距离为3,对直线AB斜率分类讨论,利用点到直线的距离公式即可得出.

解答 解:(1)当$a=2\sqrt{2}$时,A(-2,0),B(2,2),
∵kOB=1,∴∠AOB=135°.
∴${S_{△AOB}}=\frac{1}{2}×2×2\sqrt{2}×sin135°=2$.
(2)曲线C的参数方程为$\left\{\begin{array}{l}x=1+2cosθ\\ y=2sinθ\end{array}\right.(θ$为参数),化为(x-1)2+y2=4,圆心C(1,0),半径y=2.
∵点P到直线AB的最小值距离为1,
∴圆心到直线AB的距离为3,
当直线AB斜率不存在时,直线AB的方程为x=-2,
显然,符合题意,此时$a=-2\sqrt{2}$.
当直线AB存在斜率时,设直线AB的方程为y=k(x+2),
则圆心到直线AB的距离$d=\frac{|3k|}{{\sqrt{1+{k^2}}}}$,
依题意有$\frac{|3k|}{{\sqrt{1+{k^2}}}}=3$,无解.
故$a=-2\sqrt{2}$.

点评 本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、三角形的面积计算公式、直线与圆的位置关系、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知△ABC中∠A、∠B、∠C的对边分别为a,b,c,若cos2($\frac{π}{2}$+A)+cosA=$\frac{5}{4}$,b+c=$\sqrt{3}$a,求∠A,∠B,∠C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,D为边AC上一点,AB=AC=6,AD=4,若△ABC的外心恰在线段BD上,则BC=3$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.极坐标系中,点P,Q分别是曲线C1:ρ=1与曲线C2:ρ=2上任意两点,则|PQ|的最小值为(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设f(x)是定义在R上周期为2的偶函数,当x∈[0,1]时,f(x)=x,若在区间(-2,+∞)内,函数h(x)=f(x)-loga(x+2)恰有3个零点,则a的取值范围是(  )
A.(1,3)B.(2,4)C.(3,5)D.(5,7)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点分别是F1、F2,过F1作倾斜角为30°的直线交双曲线右支于M点,若MF2垂直于x轴,则双曲线的离心率为(  )
A.$\sqrt{6}$B.$\sqrt{5}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=$\sqrt{2}$,且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则|$\overrightarrow{a}$+$\overrightarrow{b}$|为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{ln(ex)}{x}$,g(x)=$\frac{k}{x+1}$(e为自然对数的底数)
(Ⅰ)求函数y=f(x)的单调区间;
(Ⅱ)当x≥1时,不等式f(x)≥g(x)恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知平行四边形ABCD中,若$\overrightarrow{AB}$=(3,0),$\overrightarrow{BC}$=(2,2$\sqrt{3}$),则S?ABCD=(  )
A.6$\sqrt{3}$B.10$\sqrt{3}$C.6D.12

查看答案和解析>>

同步练习册答案