精英家教网 > 高中数学 > 题目详情
已知圆C:x2+y2-2x+6y=0,则圆心为
 
,半径为
 
考点:圆的一般方程
专题:直线与圆
分析:利用圆的一般方程的性质能求出圆C:x2+y2-2x+6y=0的圆心和半径.
解答: 解:∵圆C:x2+y2-2x+6y=0,
∴圆心坐标为(1,-3),
半径r=
1
2
4+36
=
10

故答案为:(1,-3);
10
点评:本题考查圆的圆心和半径的求法,是基础题,解题时要认真审题,注意圆的性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

终边落在x轴的负半轴的角α的集合是
 
,终边在第一、第三象限的角平分线上的角β的集合
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在下列关于点P,直线l、m与平面α、β的命题中,正确的是(  )
A、若m⊥α,l⊥m,则l∥α
B、若l、m是异面直线,m?α,m∥β,l?β,l∥α,则α∥β
C、若α⊥β,α∩β=m,P∈α,P∈l,且l⊥m,则l⊥β
D、若α⊥β且l⊥β,m⊥l,则m⊥α

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x
1
x
,0≤x≤9
x2+x,-2≤x<0
,则f(x)的零点是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=3,a2=6,an+2=2an+1-an则a2011=(  )
A、6033B、6030
C、6133D、6130

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=lnx关于x轴对称的函数为(  )
A、g(x)=ln(-x)
B、g(x)=-ln(-x)
C、g(x)=ln(
1
x
D、g(x)=-ln(
1
x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
满足|
a|
=
2
、|
b
|=2
a
b
的夹角为135°,向量
c
=3
a
+
b
.则向量
c
的模为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=
-x2+3x+4
的定义域为集合A,集合B={x|(x-m+3)(x-m-3)≤0},x∈R,m∈R.
(1)若A∩B=[0,4],求m的值;
(2)若A⊆∁RB,求m的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)值域为(0,8],则F(x)=[f(x)]2-10f(x)-4的值域为(  )
A、[-20,-4)
B、[-20,-4]
C、[-29,-20]
D、[-29,-4)

查看答案和解析>>

同步练习册答案