精英家教网 > 高中数学 > 题目详情
17.已知某几何体是由两个四棱锥组合而成,若该几何体的正视图、俯视图和侧视图均为如图所示的图形,其中四边形是边长为$\sqrt{2}$的正方形,则该几何体的表面积是(  )
A.8$\sqrt{3}$B.4$\sqrt{3}$C.8$\sqrt{3}$+2D.4$\sqrt{3}$+2

分析 由三视图可知四棱锥的侧棱与底面边长相等,故几何体的表面积为两个四棱锥的侧面积之和.

解答 解:几何体为两个大小相等的四棱锥的组合体,
由三视图可知四棱锥的底面边长和侧棱都是$\sqrt{2}$,
∴几何体的表面积S=$\frac{1}{2}×\sqrt{2}×\sqrt{2}×sin60°×8$=4$\sqrt{3}$,
故选:B.

点评 本题考查了简单组合体的三视图,多面体的面积计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知:a,b均为正数,4a+b=2ab,则使a+b≥c恒成立的c的取值范围是(  )
A.(-∞,$\frac{9}{2}$]B.(-∞,1]C.(-∞,9]D.(-∞,8]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆Γ:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率与双曲线x2-y2=a2的离心率之和为$\frac{3\sqrt{2}}{2}$,B1、B2为椭圆Γ短轴的两个端点,P是椭圆Γ上一动点(不与B1、B2重合),直线B1P、B2P分别交直线l:y=4于M、N两点,△B1B2P的面积记为S1,△PMN的面积记为S2,且S1的最大值为4$\sqrt{2}$.
(1)求椭圆Γ的方程;
(2)若S2=λS1,当λ取最小值时,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设直线3x-4y+5=0的倾斜角为α.
(1)求tan2α的值;
(2)求$cos({\frac{π}{6}-α})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列几何体中,多面体是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.写出函数$y=\sqrt{3}{sin^2}x+2sinxcosx-\sqrt{3}{cos^2}x$的值域、单调递增区间、对称轴方程、对称中心坐标(只需写出答案即可),并用五点法作出该函数在一个周期内的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知数列{an}满足a1=1,a2=3,且2nan=(n-1)an-1+(n+1)an+1(n≥2且n∈N*)则$\frac{a_n}{n}$的最大值为(  )
A.1B.$\frac{3}{2}$C.$\frac{11}{9}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若数列{an}满足$\frac{1}{{{a_{n+1}}}}-\frac{1}{a_n}=d$(n∈N*,d为常数),则称{an}为“调和数列”,已知正项数列$\left\{{\frac{1}{x_n}}\right\}$为“调和数列”,且x1+x2+…+x20=200,则$\frac{1}{x_3}+\frac{1}{{{x_{18}}}}$的最小值为(  )
A.$\frac{1}{10}$B.10C.$\frac{1}{5}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图为某市2017年2月28天的日空气质量指数折线图.

由中国空气质量在线监测分析平台提供的空气质量指数标准如下:
空气质量指数(0,50](50,100](100,150](150,200](200,300]300以上
空气质量等级1级优2级良3级轻度污染4级中度污染5级重度污染6级严重污染
(Ⅰ)请根据所给的折线图补全下方的频率分布直方图(并用铅笔涂黑矩形区域),并估算该市2月份空气质量指数监测数据的平均数(保留小数点后一位);

(Ⅱ)研究人员发现,空气质量指数测评中PM2.5与燃烧排放的CO两个项目存在线性相关关系,以100ug/m3为单位,如表给出PM2.5与CO的相关数据:
CO(x)0.511.5
PM2.5(y)124
求y关于x的回归方程,并估计当CO排放量是200ug/m3时,PM2.5的值.
(用最小二乘法求回归方程的系数是$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n•\overline x•\overline y}}}{{\sum_{i=1}^n{x_i^2-n•{{\overline x}^2}}}}$$,\hat a=\overline y-\hat b\overline x$)

查看答案和解析>>

同步练习册答案