| A. | (-∞,$\frac{9}{2}$] | B. | (-∞,1] | C. | (-∞,9] | D. | (-∞,8] |
分析 由题意知,要使a+b≥c恒成立,即a+b的最小值≥c,利用均值不等式求解即可.
解答 解:∵a,b均为正数,4a+b=2ab,
∴$\frac{1}{a}$+$\frac{4}{b}$=2,
∴a+b=$\frac{1}{2}$(a+b)($\frac{1}{a}$+$\frac{4}{b}$)=$\frac{1}{2}$(1+4+$\frac{b}{a}$+$\frac{4a}{b}$)≥$\frac{1}{2}$(5+4)=$\frac{9}{2}$,当且仅当b=2a时,取等号,
∴c≤$\frac{9}{2}$,
故选:A
点评 本题通过恒成立问题的形式,考查了均值不等式,灵活运用了“2”的代换,是高考考查的重点内容.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x^2}{12}-\frac{y^2}{24}=1$ | B. | $\frac{y^2}{12}-\frac{x^2}{24}=1$ | C. | $\frac{y^2}{24}-\frac{x^2}{12}=1$ | D. | $\frac{x^2}{24}-\frac{y^2}{12}=1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8$\sqrt{3}$ | B. | 4$\sqrt{3}$ | C. | 8$\sqrt{3}$+2 | D. | 4$\sqrt{3}$+2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com