8£®ÒÑÖªÍÖÔ²¦££º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊÓëË«ÇúÏßx2-y2=a2µÄÀëÐÄÂÊÖ®ºÍΪ$\frac{3\sqrt{2}}{2}$£¬B1¡¢B2ΪÍÖÔ²¦£¶ÌÖáµÄÁ½¸ö¶Ëµã£¬PÊÇÍÖÔ²¦£ÉÏÒ»¶¯µã£¨²»ÓëB1¡¢B2ÖØºÏ£©£¬Ö±ÏßB1P¡¢B2P·Ö±ð½»Ö±Ïßl£ºy=4ÓÚM¡¢NÁ½µã£¬¡÷B1B2PµÄÃæ»ý¼ÇΪS1£¬¡÷PMNµÄÃæ»ý¼ÇΪS2£¬ÇÒS1µÄ×î´óֵΪ4$\sqrt{2}$£®
£¨1£©ÇóÍÖÔ²¦£µÄ·½³Ì£»
£¨2£©ÈôS2=¦ËS1£¬µ±¦ËÈ¡×îСֵʱ£¬ÇóµãPµÄ×ø±ê£®

·ÖÎö £¨1£©¸ù¾ÝÍÖÔ²µÄÀëÐÄÂÊ£¬S1µÄÃæ»ýÁз½³Ì×飬½â³öa£¬b¼´¿ÉµÃ³öÍÖÔ²·½³Ì£»
£¨2£©ÉèP£¨2$\sqrt{2}$cos¦Á£¬2sin¦Á£©£¬·Ö±ðÇó³öÖ±Ïß·½³Ì£¬µÃ³öM£¬NµÄ×ø±ê£¬ÓæÁ±íʾ³öS1£¬S2£¬´Ó¶øµÃµ½¦Ë¹ØÓÚ¦ÁµÄº¯Êý£¬ÀûÓõ¼ÊýÅжϴ˺¯ÊýµÄµ¥µ÷ÐÔ£¬µÃ³ö¦ËµÄ×îСֵ¼°Æä¶ÔÓ¦µÄ¦Á£¬´Ó¶øµÃ³öPµã×ø±ê£®

½â´ð ½â£º£¨1£©Ë«ÇúÏßµÄÀëÐÄÂÊΪ$\sqrt{2}$£¬¡àÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬
¡à$\left\{\begin{array}{l}{ab=4\sqrt{2}}\\{\frac{c}{a}=\frac{\sqrt{2}}{2}}\\{{a}^{2}-{b}^{2}={c}^{2}}\end{array}\right.$£¬½âµÃa=2$\sqrt{2}$£¬b=2£¬
¡àÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1$£®
£¨2£©ÉèP£¨2$\sqrt{2}$cos¦Á£¬2sin¦Á£©£¨0¡Ü¦Á£¼2¦ÐÇÒ¦Á$¡Ù\frac{¦Ð}{2}$£¬¦Á¡Ù$\frac{3¦Ð}{2}$£©£¬B1£¨0£¬2£©£¬B£¨0£¬-2£©£¬
ÔòÖ±ÏßB1PµÄ·½³ÌΪy=$\frac{sin¦Á-1}{\sqrt{2}cos¦Á}$x+2£¬Ö±ÏßB2PµÄ·½³ÌΪy=$\frac{sin¦Á+1}{\sqrt{2}cos¦Á}$x-2£¬
¡àM£¨$\frac{2\sqrt{2}cos¦Á}{sin¦Á-1}$£¬4£©£¬N£¨$\frac{6\sqrt{2}cos¦Á}{sin¦Á+1}$£¬4£©£¬
|MN|=|$\frac{6\sqrt{2}cos¦Á}{sin¦Á+1}$-$\frac{2\sqrt{2}cos¦Á}{sin¦Á-1}$|=|$\frac{2\sqrt{2}£¨4-2sin¦Á£©}{cos¦Á}$|£¬
¡àS2=$\frac{1}{2}$¡Á|MN|¡Á£¨4-2sin¦Á£©=$\frac{4\sqrt{2}£¨2-sin¦Á£©^{2}}{|cos¦Á|}$£¬ÓÖS1=$\frac{1}{2}¡Á2b¡Á|2\sqrt{2}cos¦Á|$=4$\sqrt{2}$|cos¦Á|£¬
¡à¦Ë=$\frac{{S}_{2}}{{S}_{1}}$=$\frac{£¨2-sin¦Á£©^{2}}{co{s}^{2}¦Á}$=£¨$\frac{2-sin¦Á}{cos¦Á}$£©2£¬
Áîf£¨¦Á£©=$\frac{2-sin¦Á}{cos¦Á}$£¬Ôòf¡ä£¨¦Á£©=$\frac{2sin¦Á-1}{co{s}^{2}¦Á}$£¬
Áîf¡ä£¨¦Á£©=0µÃ¦Á=$\frac{¦Ð}{6}$»ò¦Á=$\frac{5¦Ð}{6}$£¬
µ±0$£¼¦Á£¼\frac{¦Ð}{6}$ʱ£¬f¡ä£¨¦Á£©£¼0£¬µ±$\frac{¦Ð}{6}$$£¼¦Á£¼\frac{¦Ð}{2}$ʱ£¬f¡ä£¨¦Á£©£¾0£¬µ±$\frac{¦Ð}{2}£¼¦Á£¼\frac{5¦Ð}{6}$ʱ£¬f¡ä£¨¦Á£©£¾0£¬
µ±$\frac{5¦Ð}{6}£¼¦Á£¼\frac{3¦Ð}{2}$ʱ£¬f¡ä£¨¦Á£©£¼0£¬µ±$\frac{3¦Ð}{2}£¼¦Á£¼2¦Ð$ʱ£¬f¡ä£¨¦Á£©£¼0£¬
¡àf£¨¦Á£©ÔÚ[0£¬$\frac{¦Ð}{6}$]Éϵ¥µ÷µÝ¼õ£¬ÔÚ£¨$\frac{¦Ð}{6}$£¬$\frac{¦Ð}{2}$£©Éϵ¥µ÷µÝÔö£¬ÔÚ£¨$\frac{¦Ð}{2}$£¬$\frac{5¦Ð}{6}$]Éϵ¥µ÷µÝÔö£¬ÔÚ£¨$\frac{5¦Ð}{6}$£¬$\frac{3¦Ð}{2}$£©Éϵ¥µ÷µÝ¼õ£¬ÔÚ£¨$\frac{3¦Ð}{2}$£¬2¦Ð£©Éϵ¥µ÷µÝ¼õ£¬
¡àµ±$¦Á=\frac{¦Ð}{6}$ʱ£¬f£¨¦Á£©È¡µÃ¼«Ð¡Öµf£¨$\frac{¦Ð}{6}$£©=$\frac{2-\frac{1}{2}}{\frac{\sqrt{3}}{2}}$=$\sqrt{3}$£¬µ±¦Á=$\frac{5¦Ð}{6}$ʱ£¬f£¨¦Á£©È¡µÃ¼«´óÖµf£¨$\frac{5¦Ð}{6}$£©=$\frac{2-\frac{1}{2}}{-\frac{\sqrt{3}}{2}}$=-$\sqrt{3}$£¬
¡àµ±¦Á=$\frac{¦Ð}{6}$»ò$\frac{5¦Ð}{6}$ʱ£¬|f£¨¦Á£©|È¡µÃ×îСֵ$\sqrt{3}$£¬
¡à¦Ë=f2£¨¦Á£©µÄ×îСֵΪ$\sqrt{3}$£®
¡àµ±¦ËÈ¡µÃ×îСֵʱ£¬Pµã×ø±êΪ£¨$\sqrt{6}$£¬1£©»ò£¨-$\sqrt{6}$£¬1£©£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄÐÔÖÊ£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®½¹µãΪ£¨0£¬¡À6£©ÇÒÓëË«ÇúÏß$\frac{x^2}{2}-{y^2}=1$ÓÐÏàͬ½¥½üÏßµÄË«ÇúÏß·½³ÌÊÇ£¨¡¡¡¡£©
A£®$\frac{x^2}{12}-\frac{y^2}{24}=1$B£®$\frac{y^2}{12}-\frac{x^2}{24}=1$C£®$\frac{y^2}{24}-\frac{x^2}{12}=1$D£®$\frac{x^2}{24}-\frac{y^2}{12}=1$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖªa£¾b£¬¶þ´ÎÈýÏîʽax2+2x+b¡Ý0¶ÔÒ»ÇÐʵÊýºã³ÉÁ¢£¬ÓÖ?x0¡ÊR£¬Ê¹a${x}_{0}^{2}$+2x0+b=0£¬Ôò$\frac{{a}^{2}+{b}^{2}}{a-b}$µÄ×îСֵΪ2$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªº¯Êýf£¨x£©=alnx+$\frac{a+1}{2}{x}^{2}$+1£®
£¨1£©µ±a=-$\frac{1}{2}$ʱ£¬Çóf£¨x£©ÔÚÇø¼ä[$\frac{1}{e}$£¬e]ÉϵÄ×îÖµ£»
£¨2£©ÌÖÂÛº¯Êýf£¨x£©µÄµ¥µ÷ÐÔ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®¼ÆË㣺£¨1£©£¨1+2i£©2£»
£¨2£©£¨$\frac{1+i}{1-i}$£©6+$\frac{\sqrt{2}+\sqrt{3}i}{\sqrt{3}-\sqrt{2}i}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªº¯Êýf£¨x£©=|x+4|-|x-1|£®
£¨1£©½â²»µÈʽf£¨x£©£¾3£»
£¨2£©Èô²»µÈʽf£¨x£©+1¡Ü4a-5¡Á2aÓн⣬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®¡¶¾ÅÕÂËãÊõ¡·ÊÇÎÒ¹ú¹Å´úÄÚÈݼ«Îª·á¸»µÄÊýѧÃûÖø£¬ÊéÖÐÌáµ½ÁËÒ»ÖÖÃûΪ¡°Û»Ýù¡±µÄÎåÃæÌ壨Èçͼ£©£ºÃæABCDΪ¾ØÐΣ¬ÀâEF¡ÎAB£®Èô´Ë¼¸ºÎÌåÖУ¬AB=4£¬EF=2£¬¡÷ADEºÍ¡÷BCF¶¼ÊDZ߳¤Îª2µÄµÈ±ßÈý½ÇÐΣ¬Ôò´Ë¼¸ºÎÌåµÄ±íÃæ»ýΪ£¨¡¡¡¡£©
A£®$8\sqrt{3}$B£®$8+8\sqrt{3}$C£®$6\sqrt{2}+2\sqrt{3}$D£®$8+6\sqrt{2}+2\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑ֪ij¼¸ºÎÌåÊÇÓÉÁ½¸öËÄÀâ×¶×éºÏ¶ø³É£¬Èô¸Ã¼¸ºÎÌåµÄÕýÊÓͼ¡¢¸©ÊÓͼºÍ²àÊÓͼ¾ùΪÈçͼËùʾµÄͼÐΣ¬ÆäÖÐËıßÐÎÊDZ߳¤Îª$\sqrt{2}$µÄÕý·½ÐΣ¬Ôò¸Ã¼¸ºÎÌåµÄ±íÃæ»ýÊÇ£¨¡¡¡¡£©
A£®8$\sqrt{3}$B£®4$\sqrt{3}$C£®8$\sqrt{3}$+2D£®4$\sqrt{3}$+2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ºÐ×ÓÖÐ×°ÓдóСÏàͬµÄ2¸öºìÇòºÍ3¸ö°×Çò£¬´ÓÖÐÃþ³öÒ»¸öÇòÈ»ºó·Å»Ø´üÖÐÔÙÃþ³öÒ»¸öÇò£¬ÔòÁ½´ÎÃþ³öµÄÇòÑÕÉ«ÏàͬµÄ¸ÅÂÊÊÇ£¨¡¡¡¡£©
A£®$\frac{13}{25}$B£®$\frac{12}{25}$C£®$\frac{13}{20}$D£®$\frac{3}{5}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸