·ÖÎö £¨1£©¸ù¾ÝÍÖÔ²µÄÀëÐÄÂÊ£¬S1µÄÃæ»ýÁз½³Ì×飬½â³öa£¬b¼´¿ÉµÃ³öÍÖÔ²·½³Ì£»
£¨2£©ÉèP£¨2$\sqrt{2}$cos¦Á£¬2sin¦Á£©£¬·Ö±ðÇó³öÖ±Ïß·½³Ì£¬µÃ³öM£¬NµÄ×ø±ê£¬ÓæÁ±íʾ³öS1£¬S2£¬´Ó¶øµÃµ½¦Ë¹ØÓÚ¦ÁµÄº¯Êý£¬ÀûÓõ¼ÊýÅжϴ˺¯ÊýµÄµ¥µ÷ÐÔ£¬µÃ³ö¦ËµÄ×îСֵ¼°Æä¶ÔÓ¦µÄ¦Á£¬´Ó¶øµÃ³öPµã×ø±ê£®
½â´ð ½â£º£¨1£©Ë«ÇúÏßµÄÀëÐÄÂÊΪ$\sqrt{2}$£¬¡àÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬
¡à$\left\{\begin{array}{l}{ab=4\sqrt{2}}\\{\frac{c}{a}=\frac{\sqrt{2}}{2}}\\{{a}^{2}-{b}^{2}={c}^{2}}\end{array}\right.$£¬½âµÃa=2$\sqrt{2}$£¬b=2£¬
¡àÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1$£®
£¨2£©ÉèP£¨2$\sqrt{2}$cos¦Á£¬2sin¦Á£©£¨0¡Ü¦Á£¼2¦ÐÇÒ¦Á$¡Ù\frac{¦Ð}{2}$£¬¦Á¡Ù$\frac{3¦Ð}{2}$£©£¬B1£¨0£¬2£©£¬B£¨0£¬-2£©£¬
ÔòÖ±ÏßB1PµÄ·½³ÌΪy=$\frac{sin¦Á-1}{\sqrt{2}cos¦Á}$x+2£¬Ö±ÏßB2PµÄ·½³ÌΪy=$\frac{sin¦Á+1}{\sqrt{2}cos¦Á}$x-2£¬
¡àM£¨$\frac{2\sqrt{2}cos¦Á}{sin¦Á-1}$£¬4£©£¬N£¨$\frac{6\sqrt{2}cos¦Á}{sin¦Á+1}$£¬4£©£¬
|MN|=|$\frac{6\sqrt{2}cos¦Á}{sin¦Á+1}$-$\frac{2\sqrt{2}cos¦Á}{sin¦Á-1}$|=|$\frac{2\sqrt{2}£¨4-2sin¦Á£©}{cos¦Á}$|£¬
¡àS2=$\frac{1}{2}$¡Á|MN|¡Á£¨4-2sin¦Á£©=$\frac{4\sqrt{2}£¨2-sin¦Á£©^{2}}{|cos¦Á|}$£¬ÓÖS1=$\frac{1}{2}¡Á2b¡Á|2\sqrt{2}cos¦Á|$=4$\sqrt{2}$|cos¦Á|£¬
¡à¦Ë=$\frac{{S}_{2}}{{S}_{1}}$=$\frac{£¨2-sin¦Á£©^{2}}{co{s}^{2}¦Á}$=£¨$\frac{2-sin¦Á}{cos¦Á}$£©2£¬
Áîf£¨¦Á£©=$\frac{2-sin¦Á}{cos¦Á}$£¬Ôòf¡ä£¨¦Á£©=$\frac{2sin¦Á-1}{co{s}^{2}¦Á}$£¬
Áîf¡ä£¨¦Á£©=0µÃ¦Á=$\frac{¦Ð}{6}$»ò¦Á=$\frac{5¦Ð}{6}$£¬
µ±0$£¼¦Á£¼\frac{¦Ð}{6}$ʱ£¬f¡ä£¨¦Á£©£¼0£¬µ±$\frac{¦Ð}{6}$$£¼¦Á£¼\frac{¦Ð}{2}$ʱ£¬f¡ä£¨¦Á£©£¾0£¬µ±$\frac{¦Ð}{2}£¼¦Á£¼\frac{5¦Ð}{6}$ʱ£¬f¡ä£¨¦Á£©£¾0£¬
µ±$\frac{5¦Ð}{6}£¼¦Á£¼\frac{3¦Ð}{2}$ʱ£¬f¡ä£¨¦Á£©£¼0£¬µ±$\frac{3¦Ð}{2}£¼¦Á£¼2¦Ð$ʱ£¬f¡ä£¨¦Á£©£¼0£¬
¡àf£¨¦Á£©ÔÚ[0£¬$\frac{¦Ð}{6}$]Éϵ¥µ÷µÝ¼õ£¬ÔÚ£¨$\frac{¦Ð}{6}$£¬$\frac{¦Ð}{2}$£©Éϵ¥µ÷µÝÔö£¬ÔÚ£¨$\frac{¦Ð}{2}$£¬$\frac{5¦Ð}{6}$]Éϵ¥µ÷µÝÔö£¬ÔÚ£¨$\frac{5¦Ð}{6}$£¬$\frac{3¦Ð}{2}$£©Éϵ¥µ÷µÝ¼õ£¬ÔÚ£¨$\frac{3¦Ð}{2}$£¬2¦Ð£©Éϵ¥µ÷µÝ¼õ£¬
¡àµ±$¦Á=\frac{¦Ð}{6}$ʱ£¬f£¨¦Á£©È¡µÃ¼«Ð¡Öµf£¨$\frac{¦Ð}{6}$£©=$\frac{2-\frac{1}{2}}{\frac{\sqrt{3}}{2}}$=$\sqrt{3}$£¬µ±¦Á=$\frac{5¦Ð}{6}$ʱ£¬f£¨¦Á£©È¡µÃ¼«´óÖµf£¨$\frac{5¦Ð}{6}$£©=$\frac{2-\frac{1}{2}}{-\frac{\sqrt{3}}{2}}$=-$\sqrt{3}$£¬
¡àµ±¦Á=$\frac{¦Ð}{6}$»ò$\frac{5¦Ð}{6}$ʱ£¬|f£¨¦Á£©|È¡µÃ×îСֵ$\sqrt{3}$£¬
¡à¦Ë=f2£¨¦Á£©µÄ×îСֵΪ$\sqrt{3}$£®
¡àµ±¦ËÈ¡µÃ×îСֵʱ£¬Pµã×ø±êΪ£¨$\sqrt{6}$£¬1£©»ò£¨-$\sqrt{6}$£¬1£©£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄÐÔÖÊ£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{x^2}{12}-\frac{y^2}{24}=1$ | B£® | $\frac{y^2}{12}-\frac{x^2}{24}=1$ | C£® | $\frac{y^2}{24}-\frac{x^2}{12}=1$ | D£® | $\frac{x^2}{24}-\frac{y^2}{12}=1$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $8\sqrt{3}$ | B£® | $8+8\sqrt{3}$ | C£® | $6\sqrt{2}+2\sqrt{3}$ | D£® | $8+6\sqrt{2}+2\sqrt{3}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 8$\sqrt{3}$ | B£® | 4$\sqrt{3}$ | C£® | 8$\sqrt{3}$+2 | D£® | 4$\sqrt{3}$+2 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{13}{25}$ | B£® | $\frac{12}{25}$ | C£® | $\frac{13}{20}$ | D£® | $\frac{3}{5}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com