精英家教网 > 高中数学 > 题目详情
18.盒子中装有大小相同的2个红球和3个白球,从中摸出一个球然后放回袋中再摸出一个球,则两次摸出的球颜色相同的概率是(  )
A.$\frac{13}{25}$B.$\frac{12}{25}$C.$\frac{13}{20}$D.$\frac{3}{5}$

分析 利用互斥事件概率加法公式和相互独立事件概率乘法公式能求出两次摸出的球颜色相同的概率.

解答 解:两次摸出的球颜色相同的概率:
p=$\frac{2}{5}×\frac{2}{5}+\frac{3}{5}×\frac{3}{5}$=$\frac{13}{25}$.
故选:A.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意互斥事件概率加法公式和相互独立事件概率乘法公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知椭圆Γ:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率与双曲线x2-y2=a2的离心率之和为$\frac{3\sqrt{2}}{2}$,B1、B2为椭圆Γ短轴的两个端点,P是椭圆Γ上一动点(不与B1、B2重合),直线B1P、B2P分别交直线l:y=4于M、N两点,△B1B2P的面积记为S1,△PMN的面积记为S2,且S1的最大值为4$\sqrt{2}$.
(1)求椭圆Γ的方程;
(2)若S2=λS1,当λ取最小值时,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知数列{an}满足a1=1,a2=3,且2nan=(n-1)an-1+(n+1)an+1(n≥2且n∈N*)则$\frac{a_n}{n}$的最大值为(  )
A.1B.$\frac{3}{2}$C.$\frac{11}{9}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若数列{an}满足$\frac{1}{{{a_{n+1}}}}-\frac{1}{a_n}=d$(n∈N*,d为常数),则称{an}为“调和数列”,已知正项数列$\left\{{\frac{1}{x_n}}\right\}$为“调和数列”,且x1+x2+…+x20=200,则$\frac{1}{x_3}+\frac{1}{{{x_{18}}}}$的最小值为(  )
A.$\frac{1}{10}$B.10C.$\frac{1}{5}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在△ABC中,$\overrightarrow{AN}$=$\frac{1}{3}$$\overrightarrow{AC}$,P是BN上的一点,若$\overrightarrow{AP}$=$\frac{5}{11}$$\overrightarrow{AB}$+λ$\overrightarrow{AC}$,则实数λ的值为(  )
A.$\frac{9}{11}$B.$\frac{5}{11}$C.$\frac{3}{11}$D.$\frac{2}{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)定义在(0,+∞)上,f(1)=0,导函数f′(x)=$\frac{1}{x}$,g(x)=f(x)+f′(x).
(1)求g(x)的单调区间和最小值;
(2)讨论g(x)与g($\frac{1}{x}$)的大小关系;
(3)是否存在x0>0,使得|g(x)-g(x0)|<$\frac{1}{x}$对任意x>0成立?若存在求出x0的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.抛物线y=x2的一条切线方程为6x-y-9=0,则切点坐标为(3,9).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图为某市2017年2月28天的日空气质量指数折线图.

由中国空气质量在线监测分析平台提供的空气质量指数标准如下:
空气质量指数(0,50](50,100](100,150](150,200](200,300]300以上
空气质量等级1级优2级良3级轻度污染4级中度污染5级重度污染6级严重污染
(Ⅰ)请根据所给的折线图补全下方的频率分布直方图(并用铅笔涂黑矩形区域),并估算该市2月份空气质量指数监测数据的平均数(保留小数点后一位);

(Ⅱ)研究人员发现,空气质量指数测评中PM2.5与燃烧排放的CO两个项目存在线性相关关系,以100ug/m3为单位,如表给出PM2.5与CO的相关数据:
CO(x)0.511.5
PM2.5(y)124
求y关于x的回归方程,并估计当CO排放量是200ug/m3时,PM2.5的值.
(用最小二乘法求回归方程的系数是$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n•\overline x•\overline y}}}{{\sum_{i=1}^n{x_i^2-n•{{\overline x}^2}}}}$$,\hat a=\overline y-\hat b\overline x$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知sinθ=$\frac{3}{5}$,θ为第二象限角,则cos2θ=$\frac{7}{25}$.

查看答案和解析>>

同步练习册答案