精英家教网 > 高中数学 > 题目详情
8.已知sinθ=$\frac{3}{5}$,θ为第二象限角,则cos2θ=$\frac{7}{25}$.

分析 利用二倍角的余弦函数公式即可计算得解.

解答 解:由题意可得:cos2θ=1-2sin2θ=1-2×$\frac{9}{25}$=$\frac{7}{25}$.
故答案为:$\frac{7}{25}$.

点评 本题主要考查了二倍角的余弦函数公式在三角函数化简求值中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.盒子中装有大小相同的2个红球和3个白球,从中摸出一个球然后放回袋中再摸出一个球,则两次摸出的球颜色相同的概率是(  )
A.$\frac{13}{25}$B.$\frac{12}{25}$C.$\frac{13}{20}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若等比数列{an}的各项均为正数,a1+$\frac{2}{3}{a}_{2}$=3,a42=$\frac{1}{9}{a}_{3}{a}_{7}$,则a4=27.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.(3x-2)5(1-x+x2)展开式中x3的系数为2040.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数g(x)=$\frac{a}{6}$x3-$\frac{1}{2}$x2,a∈R,其导函数为g′(x)
(1)设f(x)=lnx-g′(x),求函数f(x)的单调区间;
(2)函数f(x)=lnx-g′(x)的极值为正实数,求a的取值范围;
(3)当a=$\frac{3}{2e}$时,若函数y=g(x)+mx-lnx有零点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知4名同学报名参加数学、计算机、航模兴趣小组,每人只选报1项,则不同的报名方法有81种.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=loga(3x2-2ax)在区间[$\frac{1}{2}$,1]上是减函数,则实数a的取值范围(0,$\frac{3}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=sin$\frac{π}{2}$x-1(x<0),g(x)=logax(a>0且a≠1 ).若它们的图象上存在关于y轴对称的点至少有3对,则实数a的取值范围是(  )
A.(0,$\frac{\sqrt{5}}{5}$)B.($\frac{\sqrt{5}}{5}$,1)C.($\frac{\sqrt{3}}{3}$,1)D.(0,$\frac{\sqrt{3}}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设向量$\overrightarrow{AB}=(1,2),\overrightarrow{BC}=(-2,t)$,且$\overrightarrow{AB}$⊥$\overrightarrow{AC}$,则实数t的值是(  )
A.$\frac{3}{2}$B.$-\frac{3}{2}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

同步练习册答案