精英家教网 > 高中数学 > 题目详情
16.(3x-2)5(1-x+x2)展开式中x3的系数为2040.

分析 利用二项式定理展开:(3x-2)5进而得出.

解答 解:(3x-2)5=(3x)5-2${∁}_{5}^{1}(3x)^{4}$+${2}^{2}{∁}_{5}^{2}(3x)^{3}$-23${∁}_{5}^{3}(3x)^{2}$+${2}^{4}{∁}_{5}^{4}$•3x-25
∴(3x-2)5(1-x+x2)展开式中x3的系数=${2}^{2}{∁}_{5}^{2}×{3}^{3}$$-{2}^{3}{∁}_{5}^{3}×{3}^{2}$×(-1)+${2}^{4}{∁}_{5}^{4}$•3=2040.
故答案为:2040.

点评 本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.若数列{an}满足$\frac{1}{{{a_{n+1}}}}-\frac{1}{a_n}=d$(n∈N*,d为常数),则称{an}为“调和数列”,已知正项数列$\left\{{\frac{1}{x_n}}\right\}$为“调和数列”,且x1+x2+…+x20=200,则$\frac{1}{x_3}+\frac{1}{{{x_{18}}}}$的最小值为(  )
A.$\frac{1}{10}$B.10C.$\frac{1}{5}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图为某市2017年2月28天的日空气质量指数折线图.

由中国空气质量在线监测分析平台提供的空气质量指数标准如下:
空气质量指数(0,50](50,100](100,150](150,200](200,300]300以上
空气质量等级1级优2级良3级轻度污染4级中度污染5级重度污染6级严重污染
(Ⅰ)请根据所给的折线图补全下方的频率分布直方图(并用铅笔涂黑矩形区域),并估算该市2月份空气质量指数监测数据的平均数(保留小数点后一位);

(Ⅱ)研究人员发现,空气质量指数测评中PM2.5与燃烧排放的CO两个项目存在线性相关关系,以100ug/m3为单位,如表给出PM2.5与CO的相关数据:
CO(x)0.511.5
PM2.5(y)124
求y关于x的回归方程,并估计当CO排放量是200ug/m3时,PM2.5的值.
(用最小二乘法求回归方程的系数是$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n•\overline x•\overline y}}}{{\sum_{i=1}^n{x_i^2-n•{{\overline x}^2}}}}$$,\hat a=\overline y-\hat b\overline x$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知点A(3,0),$\overrightarrow{EA}$=(2,1),$\overrightarrow{EF}$=(1,2),若P(2,0)满足$\overrightarrow{EP}$=λ$\overrightarrow{EA}$+μ$\overrightarrow{EF}$,则λ+μ=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.复数$\frac{(1+i)^{2}}{2i}$=(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设数列{an}的前n项和为Sn,满足Sn=(2n+1)an-(2n-1)•2n-1-1
(1)求a1,a2,a3的值;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知sinθ=$\frac{3}{5}$,θ为第二象限角,则cos2θ=$\frac{7}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某少数民族的刺绣有着悠久的历史,图中(1)、(2)、(3)、(4)为她们刺锈最简单的四个图案,这些图案都是由小正方向构成,小正方形数越多刺锈越漂亮,向按同样的规律刺锈(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形

(1)求f(6)的值
(2)求出f(n)的表达式
(3)求证:当n≥2时,$\frac{1}{f(1)}$+$\frac{1}{f(2)-1}$+$\frac{1}{f(3)-1}$+…+$\frac{1}{f(n)-1}$<$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设p:实数x满足x2-4ax+3a2<0,其中a≠0,命题q:实数x满足$\left\{\begin{array}{l}{{x}^{2}-x-6≤0}\\{{x}^{2}+2x-8>0}\end{array}\right.$,
(1)若a=1,且p∧q为真,求实数x的取值范围;
(2)若p是q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

同步练习册答案