精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=|x+4|-|x-1|.
(1)解不等式f(x)>3;
(2)若不等式f(x)+1≤4a-5×2a有解,求实数a的取值范围.

分析 (1)由题意可得$f(x)=\left\{{\begin{array}{l}{-5,x≤-4}\\{2x+3,-4<x<1}\\{5,x≥1}\end{array}}\right.$,分类讨论,求得不等式f(x)>3的解集.
(2)根据题意可得$f(x)=\left\{{\begin{array}{l}{-5,x≤-4}\\{2x+3,-4<x<1}\\{5,x≥1}\end{array}}\right.$ 的最小值为-5,可得4a-5×2a-1≥-5,由此求得实数a的取值范围.

解答 解:(1)由题意可得$f(x)=\left\{{\begin{array}{l}{-5,x≤-4}\\{2x+3,-4<x<1}\\{5,x≥1}\end{array}}\right.$,
则当x≤-4时,不成立;当-4<x<1时,2x+3>3,解得0<x<1;
当x≥1时,5>3成立,故原不等式的解集为{x|x>0}.
(2)根据题意可得$f(x)=\left\{{\begin{array}{l}{-5,x≤-4}\\{2x+3,-4<x<1}\\{5,x≥1}\end{array}}\right.$ 的最小值为-5,
由即f(x)≤4a-5×2a-1有解,∴4a-5×2a-1≥-5,即4a-5×2a+4≥0,即2a≥4或2a≤1,∴a≥2或a≤0,
故实数a的取值范围是(-∞,0]∪[2,+∞).

点评 本题主要考查带有绝对值的函数的性质,指数不等式的解法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.在△ABC中,a,b,c分别为A,B,C的对边,已知a,b,c成等比数列,a2-c2=ac+bc,a=3$\sqrt{3}$,则$\frac{b+c}{sinB+sinC}$=(  )
A.12B.6$\sqrt{2}$C.4$\sqrt{3}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某种汽车的维修费用平均第一年需1000元,第二年需2000元,第三年需3000元,…各年的维修费用组成等差数列,则这种汽车在第二十年的维修费平均为多少元?前二十年的维修费总共为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AB=1,BC=2,E为PD的中点.
(1)求直线CE与平面ABCD所成角的大小;
(2)求二面角E-AC-D的大小,(结果用反三角函数值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆Γ:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率与双曲线x2-y2=a2的离心率之和为$\frac{3\sqrt{2}}{2}$,B1、B2为椭圆Γ短轴的两个端点,P是椭圆Γ上一动点(不与B1、B2重合),直线B1P、B2P分别交直线l:y=4于M、N两点,△B1B2P的面积记为S1,△PMN的面积记为S2,且S1的最大值为4$\sqrt{2}$.
(1)求椭圆Γ的方程;
(2)若S2=λS1,当λ取最小值时,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=|x-1|,x∈R
(Ⅰ)求不等式|f(x)-3|≤4的解集;
(Ⅱ)若f(x)+f(x+3)≥m2-2m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设直线3x-4y+5=0的倾斜角为α.
(1)求tan2α的值;
(2)求$cos({\frac{π}{6}-α})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.写出函数$y=\sqrt{3}{sin^2}x+2sinxcosx-\sqrt{3}{cos^2}x$的值域、单调递增区间、对称轴方程、对称中心坐标(只需写出答案即可),并用五点法作出该函数在一个周期内的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)定义在(0,+∞)上,f(1)=0,导函数f′(x)=$\frac{1}{x}$,g(x)=f(x)+f′(x).
(1)求g(x)的单调区间和最小值;
(2)讨论g(x)与g($\frac{1}{x}$)的大小关系;
(3)是否存在x0>0,使得|g(x)-g(x0)|<$\frac{1}{x}$对任意x>0成立?若存在求出x0的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案