精英家教网 > 高中数学 > 题目详情
8.设函数f(x)=$\left\{\begin{array}{l}{\sqrt{x},x≥0}\\{(\frac{1}{2})^{x},x<0}\end{array}\right.$,则f[f(-4)]=4.

分析 由已知先求出f(-4)=($\frac{1}{2}$)-4=16,从而f[f(-4)]=f(16),由此能求出结果.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{\sqrt{x},x≥0}\\{(\frac{1}{2})^{x},x<0}\end{array}\right.$,
∴f(-4)=($\frac{1}{2}$)-4=16,
f[f(-4)]=f(16)=$\sqrt{16}$=4.
故答案为:4.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.计算:
(1)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$+($\frac{1}{10}$)-20+(-$\frac{27}{8}$)${\;}^{\frac{1}{3}}$;
(2)$\frac{1}{2}$lg25+lg2-log29×log32.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.椭圆$\frac{x^2}{9}+\frac{y^2}{4}=1$的焦点为$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$、$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$为椭圆上的一点,$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,则△F1PF2的面积为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=sin(ωx+ϕ),(ω>0,0<ϕ<π)的最小正周期是π,将函数f(x)图象向左平移$\frac{π}{3}$个单位长度后所得的函数过点$({-\frac{π}{6},1})$,则函数f(x)=sin(ωx+ϕ)(  )
A.在区间$[{-\frac{π}{6},\frac{π}{3}}]$上单调递减B.在区间$[{-\frac{π}{6},\frac{π}{3}}]$上单调递增
C.在区间$[{-\frac{π}{3},\frac{π}{6}}]$上单调递减D.在区间$[{-\frac{π}{3},\frac{π}{6}}]$上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知四组函数:
①f(x)=x,g(x)=($\sqrt{x}$)2
②f(x)=x,g(x)=$\root{3}{{x}^{3}}$;
③f(n)=2n-1,g(n)=2n+1(n∈N);
④f(x)=x2-2x-1,g(t)=t2-2t-1.
其中是同一函数的(  )
A.没有B.仅有②C.②④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.关于x的不等式ax2+bx+2>0的解集为{x|-1<x<2}则关于x的不等式bx2-ax-2>0的解集为(-2,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若tan100°=a,则用a表示cos10°的结果为(  )
A.$-\frac{1}{a}$B.$-\frac{a}{{\sqrt{1+{a^2}}}}$C.$\frac{a}{{\sqrt{1+{a^2}}}}$D.$-\frac{1}{{\sqrt{1+{a^2}}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知F1,F2为双曲线C:x2-2y2=1的左右焦点,点P在双曲线C上,∠F1PF2=120°,则${S_{△P{F_1}{F_2}}}$=(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\sqrt{3}$D.$\frac{{\sqrt{3}}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.某工厂在两年内生产产值的月增长率都是a,则第二年某月的生产产值与第一年相应月相比增长了(1+a)12-1.

查看答案和解析>>

同步练习册答案