精英家教网 > 高中数学 > 题目详情
3.已知四组函数:
①f(x)=x,g(x)=($\sqrt{x}$)2
②f(x)=x,g(x)=$\root{3}{{x}^{3}}$;
③f(n)=2n-1,g(n)=2n+1(n∈N);
④f(x)=x2-2x-1,g(t)=t2-2t-1.
其中是同一函数的(  )
A.没有B.仅有②C.②④D.②③④

分析 分别判断两个函数的定义域和对应法则是否一致,否则不是同一函数.

解答 解:①f(x)的定义域为R,而g(x)的定义域为[0,+∞),所以定义域不同,所以①不是同一函数.
②.f(x)的定义域为R,而g(x)的定义域为R,所以定义域相同,对应法则相同,所以②是同一函数.
③.因为g(n)=2n+1(n∈N)的定义域和f(n)的定义域不相同,所以③不是同一函数.
④两个函数的定义域相同,对应法则相同,所以④是同一函数.
故选C.

点评 本题主要考查判断两个函数是否为同一函数,判断的标准就是判断两个函数的定义域和对应法则是否一致,否则不是同一函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.设集合A={x|x2+x≤0,x∈z},则集合A={-1,0}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知椭圆的标准方程为${x^2}+\frac{y^2}{10}=1$,则椭圆的焦点坐标为(  )
A.(-3,0),(3,0)B.(0,-3),(0,3)C.(-$\sqrt{10}$,0),($\sqrt{10}$,0)D.(0,-$\sqrt{10}$),(0,$\sqrt{10}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.等比数列{an}的各项均为正数,且a5a6+a4a7=18,则log3a1+log3a2+…+log3a10=(  )
A.1+log35B.2+log35C.12D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,在棱长为1的正方体ABCD-A1B1C1D1中,点E是冷BC的中点,点F在冷CC1上,且CF=2FC1,P是侧面四边形BCC1B1内一点(含边界).若A1P∥平面AEF,则线段
A1P长度的取值范围是(  )
A.$[{\frac{{\sqrt{29}}}{5},\frac{{\sqrt{5}}}{2}}]$B.$[{\frac{{\sqrt{29}}}{5},\frac{{\sqrt{13}}}{3}}]$C.$[{\frac{{3\sqrt{2}}}{4},\frac{{\sqrt{13}}}{3}}]$D.$[{\frac{{3\sqrt{2}}}{4},\frac{{\sqrt{5}}}{2}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设函数f(x)=$\left\{\begin{array}{l}{\sqrt{x},x≥0}\\{(\frac{1}{2})^{x},x<0}\end{array}\right.$,则f[f(-4)]=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在数列{an}中,a1=1,an-1=2an
(1)求数列{an}的通项公式;
(2)若bn=(2n+1)an,求数列{an}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知命题p:?x∈R,x2+1<2x;命题q:ax2-ax-1<0恒成立,则-4<a<0,那么(  )
A.“非p”是假命题B.“非q”是真命题C.“p且q”为真命题D.“p或q”为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下面各组函数中为相同函数的是(  )
A.$f(x)=\sqrt{{{(x-1)}^2}},g(x)=x-1$B.f(x)=x0,g(x)=1
C.$f(x)={3^x},g(x)={(\frac{1}{3})^{-x}}$D.$f(x)=x-1,g(x)=\frac{{{x^2}-1}}{x+1}$

查看答案和解析>>

同步练习册答案