| A. | $[{\frac{{\sqrt{29}}}{5},\frac{{\sqrt{5}}}{2}}]$ | B. | $[{\frac{{\sqrt{29}}}{5},\frac{{\sqrt{13}}}{3}}]$ | C. | $[{\frac{{3\sqrt{2}}}{4},\frac{{\sqrt{13}}}{3}}]$ | D. | $[{\frac{{3\sqrt{2}}}{4},\frac{{\sqrt{5}}}{2}}]$ |
分析 取棱B1C1的中点N,在BB1上取点M,使B1M=2BM,连接MN,易证平面A1MN∥平面AEF,由题意知点P必在线段MN上,由此可判断P在M处时A1P最长,A1P⊥MN时最短,通过解直角三角形即可求得.
解答 解:如下图所示:
取棱B1C1的中点N,在BB1上取点M,使B1M=2BM,连接MN,连接BC1,
∵N、E为所在棱的中点,B1M=2BM,CF=2FC1
∴四边形MNFE为平行四边形,∴MN∥EF
∴A1N∥AE,又A1N∩MN=N,∴平面A1MN∥平面AEF,
∵P是侧面BCC1B1内一点,且A1P∥平面AEF,
则P必在线段MN上,AM=$\frac{\sqrt{13}}{3}$,AN=$\frac{\sqrt{5}}{2}$,MN=$\frac{5}{6}$'
在△A1MN中,由余弦定理求得cos∠MA1N=$\frac{6}{\sqrt{65}}$,⇒sin∠MA1N=$\frac{\sqrt{29}}{\sqrt{65}}$.
由面积相等得MN•h=A1M•A1Nsin∠MA1N⇒h=$\frac{\sqrt{29}}{5}$,
则线段A1P长度的取值范围是[$\frac{\sqrt{29}}{5},\frac{\sqrt{13}}{3}$]
故选:B![]()
点评 本题考查点、线、面间的距离问题,考查学生的运算能力及推理转化能力,属中档题,解决本题的关键是通过构造平行平面寻找P点位置.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 没有 | B. | 仅有② | C. | ②④ | D. | ②③④ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ②、④都可能为分层抽样 | B. | ①、③都不能为分层抽样 | ||
| C. | ①、④都可能为系统抽样 | D. | ②、③都不能为系统抽样 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com