分析 (1)利用x=ρcosθ、y=ρsinθ把圆O1,圆O2的极坐标方程化为直角坐标方程.
(2)把2个圆的直角坐标方程相减可得公共弦所在的直线方程,再化为参数方程.利用直线AB的参数方程求两圆的公共弦长|AB|.
解答 解:(1)圆O1的极坐标方程为ρ=2,直角坐标方程x2+y2=4,
O2的极坐标方程为,ρ2-2$\sqrt{2}$ρcos(θ-$\frac{π}{4}$)=2,直角坐标方程x2+y2-2x-2y-2=0;
(2)两圆的方程相减,可得直线AB的方程为x+y-1=0,参数方程为$\left\{\begin{array}{l}{x=-\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),
代入x2+y2=4,可得t2+$\sqrt{2}$t-3=0
∴|AB|=$\sqrt{2+12}$=$\sqrt{14}$.
点评 本题主要考查把极坐标方程化为直角坐标方程的方法,点到直线的距离公式、弦长公式的应用,直线和圆的位置关系,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | (7,±$\sqrt{14}$) | B. | (14,±$\sqrt{14}$) | C. | (7,±2$\sqrt{14}$) | D. | (-7,±2$\sqrt{14}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-3,0),(3,0) | B. | (0,-3),(0,3) | C. | (-$\sqrt{10}$,0),($\sqrt{10}$,0) | D. | (0,-$\sqrt{10}$),(0,$\sqrt{10}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1+log35 | B. | 2+log35 | C. | 12 | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[{\frac{{\sqrt{29}}}{5},\frac{{\sqrt{5}}}{2}}]$ | B. | $[{\frac{{\sqrt{29}}}{5},\frac{{\sqrt{13}}}{3}}]$ | C. | $[{\frac{{3\sqrt{2}}}{4},\frac{{\sqrt{13}}}{3}}]$ | D. | $[{\frac{{3\sqrt{2}}}{4},\frac{{\sqrt{5}}}{2}}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com