精英家教网 > 高中数学 > 题目详情
已知两个等比数列,满足.
(1)若=1,求数列的通项公式;
(2)若数列唯一,求的值.
(1)
(2)
(1)当a=1时,,又为等比数列,不妨设公比为,由等比数列性质知:,同时又有所以:
(2)要唯一,当公比时,由
最少有一个根(有两个根时,保证仅有一个正根)
,此时满足条件的a有无数多个,不符合。
当公比时,等比数列首项为a,其余各项均为常数0,唯一,此时由,可推得符合
综上:
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设数列满足
(Ⅰ)求的通项公式;
(Ⅱ)设,记,证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在等比数列中,=6,=5,则等于(   )
A.B.C.D.﹣或﹣

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共12分)
已知是以a为首项,q为公比的等比数列,为它的前n项和.
(Ⅰ)当成等差数列时,求q的值;
(Ⅱ)当成等差数列时,求证:对任意自然数k也成等差数列.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题


观察下列等式

照此规律,第个等式为        

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知a、b、c成等差数列,则直线被曲线截得的弦长的最小值为
A.B.C.D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数对任意实数都满足条件
,且,和②,且
(Ⅰ)求数列的通项公式;(为正整数)
(II)设,求数列的前项和

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

把100个面包分给5个人,使每人所得成等差数列,且使较大的三份之和的是较小的两份之和,则最小1份是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

            。

查看答案和解析>>

同步练习册答案