精英家教网 > 高中数学 > 题目详情

一个三角形数表按如下方式构成(如图:其中项数):第一行是以4为首项,4为公差的等差数列,从第二行起,每一个数是其肩上两个数的和,例如:为数表中第行的第个数.
(1)求第2行和第3行的通项公式
(2)证明:数表中除最后2行外每一行的数都依次成等差数列;
(3)求关于)的表达式.

(1),;(2)证明见解析,;(3)

解析试题分析:(1)根据定义,,因此
;(2)由于第行的数依赖于第的数,因此我们可用数学归纳法证明;(3)设第行的公差为
,而
,从而,即,于是有,由此可求得数列是公差为1的等差数列,而,由等差数列通项公式得,从而有
试题解析:(1)
. (4分)
(2)由已知,第一行是等差数列,
假设第行是以为公差的等差数列,则由

(常数)
知第行的数也依次成等差数列,且其公差为.
综上可得,数表中除最后2行以外每一行都成等差数列.        (9分)
(3)由于,所以,      (11分)
所以
,               (13分)
于是,即,         (15分)
又因为,所以,数列是以2为首项,1为公差的等差数列, 所以,,所以).   (18分)
考点:(1)等差数列的通项公式;(2)等差数列的判定;(3)由递推公式求通项公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

数列的前项和记为,已知
(Ⅰ)求的值,猜想的表达式;
(Ⅱ)请用数学归纳法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设不等式组所表示的平面区域为,记内的格点(格点即横坐标和纵坐标均为整数的点)个数为
(1)求的值及的表达式;
(2)设为数列的前项的和,其中,问是否存在正整数,使成立?若存在,求出正整数;若不存在,说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a,b是不相等的正数,在a,b之间分别插入m个正数a1,a2, ,am和正数b1,b2, ,
bm,使a,a1,a2, ,am,b是等差数列,a,b1,b2, ,bm,b是等比数列.
(1)若m=5,,求的值;
(2)若b=λa(λ∈N*,λ≥2),如果存在n (n∈N*,6≤n≤m)使得an-5=bn,求λ的最小值及此时m的值;
(3)求证:an>bn(n∈N*,n≤m).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列{an}共有n)项,且,对每个i (1≤iiN),均有
(1)当时,写出满足条件的所有数列{an}(不必写出过程);
(2)当时,求满足条件的数列{an}的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知an=n×0.8n(n∈N*).
(1)判断数列{an}的单调性;
(2)是否存在最小正整数k,使得数列{an}中的任意一项均小于k?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列中,为数列的前项和,且
(1)求数列的通项公式;
(2)设,求数列的前项的和
(3)证明对一切,有

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列{an}(n∈N)中,a1=0,当3an<n2时,an+1=n2,当3an>n2时,an+1=3an.求a2,a3,a4,a5,猜测数列的通项an并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列
(1)求证:为等比数列,并求出通项公式
(2)记数列 的前项和为,求

查看答案和解析>>

同步练习册答案