已知a,b是不相等的正数,在a,b之间分别插入m个正数a1,a2, ,am和正数b1,b2, ,
bm,使a,a1,a2, ,am,b是等差数列,a,b1,b2, ,bm,b是等比数列.
(1)若m=5,=,求的值;
(2)若b=λa(λ∈N*,λ≥2),如果存在n (n∈N*,6≤n≤m)使得an-5=bn,求λ的最小值及此时m的值;
(3)求证:an>bn(n∈N*,n≤m).
(1);(2)最小值为4,此时为29;(3)详见解析
解析试题分析:(1)根据题意m=5时,共有7项,设等差数列的公差为,等比数列的公比为,则,表示出,又由,可得到,解得;(2)由条件得,即,从而得,又由于,即,从而得,又题中有,可得, 化简消去a得:,观察此式结构特征:,则要求为有理数.即必须为有理数,而,可将用数字代入检验: 若,则为无理数,不满足条件; 同理,不满足条件; 当时,.要使为有理数,则必须为整数,要满足 ,可解得;(3)可假设,为数列的前项的和,我们易先证:若为递增数列,则为递增数列;同理可证,若为递减数列,则为递减数列;由于a和b的大小关系不确定,故要对其分类讨论:①当时,.当时,.即,即.因为,所以,即,即;②当时,同理可求得.
试题解析:(1)设等差数列的公差为,等比数列的公比为,
则.
. 2分
因为,所以,解得. 4分
(2)因为,所以,从而得.
因为,所以,从而得.
因为,所以.
因为,所以(*). 6分
因为
科目:高中数学 来源: 题型:解答题
已知数列中,,且有.
(1)写出所有可能的值;
(2)是否存在一个数列满足:对于任意正整数,都有成立?若有,请写出这个数列的前6项,若没有,说明理由;
(3)求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知集合,若该集合具有下列性质的子集:每个子集至少含有2个元素,且每个子集中任意两个元素之差的绝对值大于1,则称这些子集为子集,记子集的个数为.
(1)当时,写出所有子集;
(2)求;
(3)记,求证:
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
一个三角形数表按如下方式构成(如图:其中项数):第一行是以4为首项,4为公差的等差数列,从第二行起,每一个数是其肩上两个数的和,例如:;为数表中第行的第个数.
(1)求第2行和第3行的通项公式和;
(2)证明:数表中除最后2行外每一行的数都依次成等差数列;
(3)求关于()的表达式.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知各项均为正数的数列{}满足--2=0,n∈N﹡,且是a2,a4的等差中项.
(1)求数列{}的通项公式;
(2)若=,=b1+b2+…+,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com