精英家教网 > 高中数学 > 题目详情
4.已知sinα=$\frac{4}{5}$,则$\frac{1+tanα}{1-tanα}$=-7或-$\frac{1}{7}$.

分析 由已知利用同角三角函数基本关系式可求cosα的值,利用同角三角函数基本关系式即可化简求值得解.

解答 解:∵sinα=$\frac{4}{5}$,
∴cosα=±$\sqrt{1-si{n}^{2}α}$=±$\frac{3}{5}$,
∴$\frac{1+tanα}{1-tanα}$=$\frac{\frac{cosα+sinα}{cosα}}{\frac{cosα-sinα}{cosα}}$=$\frac{cosα+sinα}{cosα-sinα}$=-7或-$\frac{1}{7}$.
故答案为:-7或-$\frac{1}{7}$.

点评 本题主要考查了同角三角函数基本关系式在三角函数化简求值中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.若圆C1:x2+y2+ax=0与圆C2:x2+y2+2ax+ytanθ=0都关于直线2x-y-1=0对称,则sinθcosθ=(  )
A.$\frac{2}{5}$B.-$\frac{6}{37}$C.-$\frac{2}{5}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若x,y满足约束条件$\left\{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}\right.$,则$\frac{y}{x-3}$的最小值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={x|x2+3x-4≤0},B={x|x=2n+1,n∈Z},则集合A∩B中元素的个数为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知△ABC中,tanA=$\frac{cosB-cosC}{sinC-sinB}$成立,则△ABC为(  )
A.等腰三角形B.A=60°的三角形
C.等腰三角形或A=60°的三角形D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图所示的是函数y=2sin(ωx+φ)(|φ|<$\frac{π}{2}$)的部分图象,那么(  )
A.ω=$\frac{10}{11}$,φ=$\frac{π}{6}$B.ω=$\frac{10}{11}$,φ=-$\frac{π}{6}$C.ω=2,φ=$\frac{π}{6}$D.ω=2,φ=-$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,角A,B,C对应的边分别是a,b,c,已知3cosBcosC+2=3sinBsinC+2cos2A
(1)求角A的大小;
(2)已知$\frac{b}{c}$+$\frac{c}{b}$=4,求sinBsinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知F1,F2为双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1(a>0,b>0)$的左、右焦点,过点F2作此双曲线一条渐近线的垂线,垂足为M,且满足|$\overrightarrow{M{F}_{1}}$|=3|$\overrightarrow{M{F}_{2}}$|,则此双曲线的离心率是(  )
A.$\sqrt{2}$B.$\frac{\sqrt{5}}{2}$C.$\sqrt{5}$D.$\frac{\sqrt{6}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.对定义在区间D上的函数f(x)和g(x),如果对任意x∈D,都有|f(x)-g(x)|≤1成立,那么称函数f(x)在区间D上可被g(x)替代,D称为“替代区间”.给出以下命题:
①f(x)=x2+1在区间(-∞,+∞)上可被g(x)=x2+$\frac{1}{2}$替代;
②f(x)=x可被g(x)=1-$\frac{1}{4x}$替代的一个“替代区间”为[$\frac{1}{4}$,$\frac{3}{2}$]
③f(x)=lnx在区间[1,e]可被g(x)=$\frac{1}{x}$-b替代,则0≤b≤$\frac{1}{e}$
④f(x)=ln(ax2+x)(x∈D1),g(x)=sinx(x∈D2),则存在实数a(≠0),使得f(x)在区间D1∩D2上被g(x)替代.
其中真命题的有①②③.

查看答案和解析>>

同步练习册答案