精英家教网 > 高中数学 > 题目详情
(2007•武汉模拟)(文)如果函数f(x)=x2-bx+2在闭区间[-1,2]上有反函数,那么实数b的取值范围(  )
分析:函数f(x)=x2-bx+2在闭区间[-1,2]上有反函数,只须函数f(x)=x2-bx+2在闭区间[-1,2]上是单调函数?f′(x)≥0或f′(x)≤0在[-1,2]恒成立,从而转化求函数g(x)=2x,在[-1,2]上的最值问题解决即可.
解答:解:对函数求导可得,f′(x)=2x-b,
函数f(x)=x2-bx+2在闭区间[-1,2]上有反函数,只须函数f(x)=x2-bx+2在闭区间[-1,2]上是单调函数
即f′(x)=2x-b≥0或f′(x)=2x-b≤0在[-1,2]恒成立
即b≤2x或b≥2x在[-1,2]上恒成立
令g(x)=2x,则g(x)在[-1,2]上的最小值为-2,最大值是g(2)=4
∴a≤-2或a≥4
故选D.
点评:本题主要考查了反函数、函数的单调性与函数导数的关系的应用,函数的恒成立问题的求解常会转化为求函数的最值,体现了构造函数与转化思想的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2007•武汉模拟)已知函数f(x)=2
x
+
4-x
,则函数f(x)的值域为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•武汉模拟)如图,在平面四边形ABCD中,AB=AD=1,∠BAD=θ,而△BCD是正三角形,
(1)将四边形ABCD面积S表示为θ的函数;
(2)求S的最大值及此时θ角的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•武汉模拟)复数z=(1-i)2i等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•武汉模拟)直线AB过抛物线y2=x的焦点F,与抛物线交于A、B两点,且|AB|=3,则线段AB的中点到y轴的距离为
5
4
5
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•武汉模拟)如图,直线l:y=
4
3
(x-2)和双曲线C:
x2
a2
-
y2
b2
=1 (a>0,b>0)交于A、B两点,|AB|=
12
11
,又l关于直线l1:y=
b
a
x对称的直线l2与x轴平行.
(1)求双曲线C的离心率;(2)求双曲线C的方程.

查看答案和解析>>

同步练习册答案