分析 (1)由题意,利用向量坐标运算求出函数y=f(x)的含参解析式,再由“最小正周期为3π”求出ω,“当x∈[0,π]时,函数f(x)的最大值为1”求出m,即求出函数f(x)的表达式;
(2)由(1)可知,求出C=$\frac{π}{2}$,联合2sin2B=cosB+cos(A-C)求出sinA的值.
解答 解:(1)由题意得,$\overrightarrow{a}$$•\overrightarrow{b}$=$\sqrt{3}$sinωx-(-sin$\frac{ωx}{2}$)•2sin$\frac{ωx}{2}$)=$\sqrt{3}$sinωx+cosωx=2sin(ωx+$\frac{π}{6}$),
所以f(x)=2sin(ωx+$\frac{π}{6}$)+m,
又因为最小正周期为3π,所以ω=$\frac{2π}{3π}$=$\frac{2}{3}$,
所以f(x)=2sin($\frac{2}{3}$x+$\frac{π}{6}$)+m,
又因为x∈[0,π]即$\frac{2}{3}$x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{5π}{6}$],
所以f(x)max=2+m=1,
所以m=-1,
所以f(x)=2sin($\frac{2}{3}$x+$\frac{π}{6}$)-1.
(2)由(1)可知f(C)=2sin($\frac{2}{3}$C+$\frac{π}{6}$)-1=1,
所以sin($\frac{2}{3}$C+$\frac{π}{6}$)=1,
所以$\frac{2}{3}$C+$\frac{π}{6}$=$\frac{π}{2}$即C=$\frac{π}{2}$,
又因为2sin2B=cosB+cos(A-C),
所以2sin2($\frac{π}{2}$-A)=cos($\frac{π}{2}$-A)+cos(A-$\frac{π}{2}$),
所以sin2A+sinA-1=0,
所以sinA=$\frac{-1+\sqrt{5}}{2}$或$\frac{-1-\sqrt{5}}{2}$(舍),
所以sinA=$\frac{-1+\sqrt{5}}{2}$.
点评 本题考查学生向量坐标运算,三角函数性质和解三角形等内容.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {0,1} | B. | {-1,0,1} | C. | {0,1,2} | D. | {-1,0,1,2} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{5}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com