精英家教网 > 高中数学 > 题目详情
10.已知n∈N*且n>1,设(x+1)n的展开式中第3项的系数为an、各项的二项式系数之和为bn
(1)求a2+a3+a4+…+a9的值;
(2)证明:1+$\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+…+$\frac{1}{\sqrt{{b}_{n}}}$>$\sqrt{{b}_{n}}$.

分析 (1)由题意,an=Cn2,利用组合数的性质,即可求a2+a3+a4+…+a9的值;
(2)先证明n=1时,不等式成立,再假设n=k时,不等式成立,进而证明出n=k+1时,不等式也成立,即可得到结论.

解答 (1)解:由题意,an=Cn2,∴a2+a3+a4+…+a9=C22+C32+…+C92=C103=120;
(2)证明:由题意,bn=2n
①n=1时,左边=1+$\frac{1}{\sqrt{2}}$,右边=$\sqrt{2}$,成立;
②设n=k时,结论成立,即1+$\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+…+$\frac{1}{\sqrt{{2}^{k}}}$>$\sqrt{{2}^{k}}$,
n=k+1时,左边=1+$\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+…+$\frac{1}{\sqrt{{2}^{k}}}$+$\frac{1}{\sqrt{{2}^{k}+1}}$+…+$\frac{1}{\sqrt{{2}^{k+1}}}$>$\sqrt{{2}^{k}}$+$\frac{1}{\sqrt{{2}^{k}+1}}$+…+$\frac{1}{\sqrt{{2}^{k+1}}}$
>$\sqrt{{2}^{k}}$+$\frac{{2}^{k+1}-{2}^{k}+1}{\sqrt{{2}^{k+1}}}$=$\frac{\sqrt{2}•{2}^{k}+{2}^{k}+1}{\sqrt{{2}^{k+1}}}$>$\sqrt{{2}^{k+1}}$,
即当n=k+1时,不等式也成立.
由①②可知,对于任意n∈N+时,不等式成立.

点评 数学归纳法常常用来证明一个与自然数集N相关的性质,其步骤为:设P(n)是关于自然数n的命题,若1)(奠基) P(n)在n=1时成立;2)(归纳) 在P(k)(k为任意自然数)成立的假设下可以推出P(k+1)成立,则P(n)对一切自然数n都成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知向量$\overrightarrow{a}$=($\sqrt{3}$,-sin$\frac{ωx}{2}$),$\overrightarrow{b}$=(sinωx,2sin$\frac{ωx}{2}$),函数f(x)=$\overrightarrow{a}$$•\overrightarrow{b}$+m(ω>0)的最小正周期为3π,且当x∈[0,π]时,函数f(x)的最大值为1.
(1)求函数f(x)的表达式;
(2)在△ABC中,若f(C)=1,且2sin2B=cosB+cos(A-C),求sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.解下列方程:
(1)9x-4•3x+3=0;
(2)log3(x2-10)=1+log3x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知f(x)=x2+x+1,g(x-1)=f(x+1),则g(x)=x2+5x+7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=lg(x2-ax-1)在(1,+∞)上是增函数,则实数a的取值范围是a≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知$\overrightarrow{a}$=(-2,2),$\overrightarrow{b}$=(3,-4),$\overrightarrow{c}$=(1,5),求
(1)2$\overrightarrow{a}$-$\overrightarrow{b}$+3$\overrightarrow{c}$;
(2)3($\overrightarrow{a}$-$\overrightarrow{b}$)+5$\overrightarrow{c}$;
(3)($\overrightarrow{a}$+2$\overrightarrow{b}$)$•\overrightarrow{c}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知抛物线y2=2px(p>0)的焦点F到准线的距离为2,若抛物线上一点P满足$\overrightarrow{PF}=2\overrightarrow{FM},|\overrightarrow{PF}$|=3,则点M的坐标为(  )
A.($\frac{1}{2}$,2$\sqrt{2}$)或($\frac{1}{2}$,-2$\sqrt{2}$)B.($\frac{1}{2}$,$\sqrt{2}$)或($\frac{1}{2}$,-$\sqrt{2}$)C.(2$\sqrt{2}$,$\frac{1}{2}$)或(2$\sqrt{2}$,-$\frac{1}{2}$)D.($\sqrt{2}$,$\frac{1}{2}$)或($\sqrt{2}$,-$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知曲线f(x)=ex-ax-m(m∈R)在点(1,f(1)))处的切线方程为y=(e-1)x+1-a-m.
(1)求f(x)的单调区间和极值;
(2)当m=-1时,证明:($\frac{x-lnx}{{e}^{x}}$)f(x)>1-$\frac{1}{{e}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知抛物线C:y2=-2px(p>0)的焦点坐标为F,在抛物线C上存在点M,使得点F关于M的对称点恰好在直线1:x+y-2=0上,且|MF|=1.
(1)求抛物线C的方程;
(2)若直线MF与抛物线C的另一个交点为N,点P在y轴上,求$\overrightarrow{PM}$•$\overrightarrow{PN}$的最小值.

查看答案和解析>>

同步练习册答案