精英家教网 > 高中数学 > 题目详情
19.已知曲线f(x)=ex-ax-m(m∈R)在点(1,f(1)))处的切线方程为y=(e-1)x+1-a-m.
(1)求f(x)的单调区间和极值;
(2)当m=-1时,证明:($\frac{x-lnx}{{e}^{x}}$)f(x)>1-$\frac{1}{{e}^{2}}$.

分析 (1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间和极值即可;
(2)令h(x)=x-lnx,令p(x)=1-$\frac{x-1}{{e}^{x}}$,根据函数的单调性分别求出它们的最小值,从而证出结论.

解答 解:(1)f′(x)=ex-a,
∴f′(1)=e-a=e-1,解得:a=1,
∴f(x)=ex-x-m,f′(x)=ex-1,
令f′(x)>0,解得:x>0,
令f′(x)<0,解得:x<0,
∴f(x)在(-∞,0)递减,在(0,+∞)递增,
∴f(x)极小值=f(0)=1-m;
(2)($\frac{x-lnx}{{e}^{x}}$)f(x)=(x-lnx)(1-$\frac{x-1}{{e}^{x}}$),
令h(x)=x-lnx,h′(x)=$\frac{x-1}{x}$,
∴h(x)在(0,1)递减,在(1,+∞)递增,
∴h(x)≥h(1)=1①,
令p(x)=1-$\frac{x-1}{{e}^{x}}$,p′(x)=$\frac{x-2}{{e}^{x}}$,
∴p(x)在(0,2)递减,在(2,+∞)递增,
∴p(x)≥p(2)=1-$\frac{1}{{e}^{2}}$②,
由①②得::($\frac{x-lnx}{{e}^{x}}$)f(x)=h(x)p(x)>1-$\frac{1}{{e}^{2}}$.

点评 本题考查了函数的单调性、极值问题,考查导数的应用以及函数恒成立问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.在△ABC中,角A、B、C的对边a、b、c成等差数列,且A-C=90°,则cosB=(  )
A.$\frac{3}{5}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知n∈N*且n>1,设(x+1)n的展开式中第3项的系数为an、各项的二项式系数之和为bn
(1)求a2+a3+a4+…+a9的值;
(2)证明:1+$\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+…+$\frac{1}{\sqrt{{b}_{n}}}$>$\sqrt{{b}_{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(文科做)已知函数f(x)=x-$\frac{2a}{x}$-(a+2)lnx,其中实数a≥0.
(1)若a=0,求函数f(x)在x∈[1,3]上的最值;
(2)若a>0,讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知动圆M过定点F(0,1),且与x轴相切,点F关于圆心M的对称点为F′,点F′的轨迹为C
(Ⅰ)求曲线C的方程;
(Ⅱ)过点(-4,0)的直线l与曲线C交于A,B两点,求线段AB的垂直平分线的纵截距的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.曲线C上任一点P与两点F1(-2,0),F2(2,0)连线的斜率乘积为-$\frac{1}{2}$.
(1)求曲线C的方程;
(2)过点M(1,1)的直线与曲线C交于A,B,且点M恰好为线段AB的中点,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥P-ABCD中,底面ABCD为菱形,M,N分别为PB,CD的中点,二面角P-CD-A的大小为60°,∠ABC=60°,AB=2,PC=PD=$\sqrt{13}$
(Ⅰ)求证:PA⊥平面ABCD;
(Ⅱ)求直线MN与平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知抛物线y2=2px(p>0)过定点A(1,1),B,C是抛物线上异于A的两个动点,且AB⊥AC.
(Ⅰ)求抛物线的方程;
(Ⅱ)求证:直线BC恒过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知抛物线C:y2=4x的交点为F,直线y=x-1与C相交于A,B两点,与双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=2(a>0,b>0)的渐近线相交于M,N两点,若线段AB与MN的中点相同,则双曲线E的离心率为$\frac{\sqrt{15}}{3}$.

查看答案和解析>>

同步练习册答案