精英家教网 > 高中数学 > 题目详情
11.如图,在四棱锥P-ABCD中,底面ABCD为菱形,M,N分别为PB,CD的中点,二面角P-CD-A的大小为60°,∠ABC=60°,AB=2,PC=PD=$\sqrt{13}$
(Ⅰ)求证:PA⊥平面ABCD;
(Ⅱ)求直线MN与平面PCD所成角的正弦值.

分析 (I)连结AN,根据三线合一可得AN⊥CD,PN⊥CD,于是得出CD⊥平面PAN,故而PA⊥CD,计算AN,PN,利用余弦定理求出PA,得出PA⊥AN,从而得出PA⊥平面ABCD;
(II)以A为原点建立空间坐标系,求出平面PCD的法向量$\overrightarrow{n}$,则|cos<$\overrightarrow{MN}$,$\overrightarrow{n}$>|即为所求.

解答 证明:(I)连结AN,
∵四边形ABCD是菱形,∠ABC=60°,
∴△ACD是等边三角形,
∵N是CD的中点,PC=PD,
∴AN⊥CD,PN⊥CD,
∴∠PNA为二面角P-CD-A的平面角,且CD⊥平面PAN.
∴PA⊥CD,∠PNA=60°.
∵AB=AD=2,PC=PD=$\sqrt{13}$.∴AN=$\sqrt{3}$,PN=$\sqrt{P{C}^{2}-C{N}^{2}}$=2$\sqrt{3}$.
在△PAN中,由余弦定理得PA2=AN2+PN2-2AN•PNcos60°=3+12-2$•\sqrt{3}•2\sqrt{3}•\frac{1}{2}$=9.
∴PA2+AN2=PN2,∴PA⊥AN,
又CD?平面ABCD,AN?平面ABCD,AN∩CD=N,
∴PA⊥平面ABCD.
(II)以A为原点,以AB,AN,AP为坐标轴建立空间直角坐标系,如图所示:
则A(0,0,0),B(2,0,0),N(0,$\sqrt{3}$,0),P(0,0,3),C(1,$\sqrt{3}$,0),D(-1,$\sqrt{3}$,0).
∴M(1,0,$\frac{3}{2}$).
∴$\overrightarrow{MN}$=(-1,$\sqrt{3}$,-$\frac{3}{2}$),$\overrightarrow{PC}$=(1,$\sqrt{3}$,-3),$\overrightarrow{CD}$=(-2,0,0).
设平面PCD的法向量为$\overrightarrow{n}$=(x,y,z),则$\overrightarrow{n}•\overrightarrow{PC}=0$,$\overrightarrow{n}•\overrightarrow{CD}$=0,
∴$\left\{\begin{array}{l}{x+\sqrt{3}y-3z=0}\\{-2x=0}\end{array}\right.$,令z=1得$\overrightarrow{n}$=(0,$\sqrt{3}$,1).
∴$\overrightarrow{MN}•\overrightarrow{n}$=$\frac{3}{2}$,
∴cos<$\overrightarrow{MN},\overrightarrow{n}$>=$\frac{\overrightarrow{MN}•\overrightarrow{n}}{|\overrightarrow{MN}||\overrightarrow{n}|}$=$\frac{\frac{3}{2}}{2•\frac{5}{2}}$=$\frac{3}{10}$.
∴直线MN与平面PCD所成角的正弦值为$\frac{3}{10}$.

点评 本题考查了线面垂直的判定,空间向量的应用,线面角的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.解下列方程:
(1)9x-4•3x+3=0;
(2)log3(x2-10)=1+log3x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知抛物线y2=2px(p>0)的焦点F到准线的距离为2,若抛物线上一点P满足$\overrightarrow{PF}=2\overrightarrow{FM},|\overrightarrow{PF}$|=3,则点M的坐标为(  )
A.($\frac{1}{2}$,2$\sqrt{2}$)或($\frac{1}{2}$,-2$\sqrt{2}$)B.($\frac{1}{2}$,$\sqrt{2}$)或($\frac{1}{2}$,-$\sqrt{2}$)C.(2$\sqrt{2}$,$\frac{1}{2}$)或(2$\sqrt{2}$,-$\frac{1}{2}$)D.($\sqrt{2}$,$\frac{1}{2}$)或($\sqrt{2}$,-$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知曲线f(x)=ex-ax-m(m∈R)在点(1,f(1)))处的切线方程为y=(e-1)x+1-a-m.
(1)求f(x)的单调区间和极值;
(2)当m=-1时,证明:($\frac{x-lnx}{{e}^{x}}$)f(x)>1-$\frac{1}{{e}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设a为正实数,函数f(x)=ax,g(x)=lnx.
(1)求函数h(x)=f(x)•g(x)的极值;
(2)证明:?x0∈R,使得当x>x0时,f(x)>g(x)恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.己知直线ax+by-6=0(a>0,b>0)被圆x2+y2-2x-4y=0截得的弦长为2$\sqrt{5}$,则ab的最大值是(  )
A.9B.$\frac{9}{2}$C.4D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知抛物线y2=2px(p>0)的焦点坐标为(1,0),过点M(0,2)的直线l与抛物线交于A,B两点,且直线l与x轴交于点C.
(1)求证:|MC|2=|MA|•|MB|;
(2)设$\overrightarrow{MA}$=α$\overrightarrow{AC}$,$\overrightarrow{MB}$=$β\overrightarrow{BC}$,试问α+β是否为定值,若是,求出此定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知抛物线C:y2=-2px(p>0)的焦点坐标为F,在抛物线C上存在点M,使得点F关于M的对称点恰好在直线1:x+y-2=0上,且|MF|=1.
(1)求抛物线C的方程;
(2)若直线MF与抛物线C的另一个交点为N,点P在y轴上,求$\overrightarrow{PM}$•$\overrightarrow{PN}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知实数x,y满足x2+y2≤1,则|x+2y-2|+|6-2x-3y|的最大值是8+$\sqrt{34}$.

查看答案和解析>>

同步练习册答案