分析 (1)求出函数的导数,得到函数的单调区间,从而求出函数在闭区间上的最值即可;
(2)求出函数的导数,通过讨论a的范围,确定导函数的符号,从而求出函数的单调区间即可.
解答 解:(1)∵f(x)=x-2lnx,∴f′(x)=$\frac{x-2}{x}$,
令f′(x)=0,∴x=2.列表如下,
| x | 1 | (1,2) | 2 | (2,3) | 3 |
| f'(x) | - | 0 | + | ||
| f(x) | 1 | ↘ | 2-2ln2 | ↗ | 3-2ln3 |
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{1}{2}$,2$\sqrt{2}$)或($\frac{1}{2}$,-2$\sqrt{2}$) | B. | ($\frac{1}{2}$,$\sqrt{2}$)或($\frac{1}{2}$,-$\sqrt{2}$) | C. | (2$\sqrt{2}$,$\frac{1}{2}$)或(2$\sqrt{2}$,-$\frac{1}{2}$) | D. | ($\sqrt{2}$,$\frac{1}{2}$)或($\sqrt{2}$,-$\frac{1}{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 9 | B. | $\frac{9}{2}$ | C. | 4 | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 10π | B. | $\frac{26}{3}π$ | C. | $\frac{56}{3}π$ | D. | 24π |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com