精英家教网 > 高中数学 > 题目详情
9.在△ABC中,角A、B、C的对边a、b、c成等差数列,且A-C=90°,则cosB=(  )
A.$\frac{3}{5}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{3}{4}$

分析 由等差数列的性质结合三角形的知识可得C=45°-$\frac{B}{2}$,再由正弦定理求得sin$\frac{B}{2}$的值,利用二倍角公式求得答案.

解答 解:∵a,b,c成等差数列,∴2b=a+c,
又∵A-C=90°,A+B+C=180°,
∴C=45°-$\frac{B}{2}$,
由正弦定理可得2sinB=sinA+sinC,
∴2sinB=sin(90°+C)+sinC
=cosC+sinC=$\sqrt{2}$sin(C+45°)
=$\sqrt{2}$sin(45°-$\frac{B}{2}$+45°)
=$\sqrt{2}$sin(90°-$\frac{B}{2}$)=$\sqrt{2}$cos$\frac{B}{2}$,
∴2sinB=4sin$\frac{B}{2}$cos$\frac{B}{2}$=$\sqrt{2}$cos$\frac{B}{2}$,
解得sin$\frac{B}{2}$=$\frac{\sqrt{2}}{4}$,
∴cosB=1-2sin2$\frac{B}{2}$=$\frac{3}{4}$
故选:D.

点评 本题考查等差数列的性质与应用问题,也考查了解三角形的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.在等比数列{an}中,各项都是正数,且a1,$\frac{1}{2}$a3,2a2成等差数列,则$\frac{{{a_6}+{a_8}+{a_{10}}}}{{{a_7}+{a_9}+{a_{11}}}}$=$\sqrt{2}-1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知向量$\overrightarrow{a}$=($\sqrt{3}$,-sin$\frac{ωx}{2}$),$\overrightarrow{b}$=(sinωx,2sin$\frac{ωx}{2}$),函数f(x)=$\overrightarrow{a}$$•\overrightarrow{b}$+m(ω>0)的最小正周期为3π,且当x∈[0,π]时,函数f(x)的最大值为1.
(1)求函数f(x)的表达式;
(2)在△ABC中,若f(C)=1,且2sin2B=cosB+cos(A-C),求sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.5名实习老师到3个班级参加教育实习活动,则每个班级至少有一名实习老师的方案共有150种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.将函数y=x2的图象按照向量$\overrightarrow{a}$经过一次平移后,得到函数y=x2+4x+5的图象,则向量$\overrightarrow{a}$等于(  )
A.(2,-1)B.(-2,1)C.(-2,-1)D.(2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.双曲线9x2-4y2=-36的渐近线方程是y=±$\frac{3}{2}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.解下列方程:
(1)9x-4•3x+3=0;
(2)log3(x2-10)=1+log3x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知f(x)=x2+x+1,g(x-1)=f(x+1),则g(x)=x2+5x+7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知曲线f(x)=ex-ax-m(m∈R)在点(1,f(1)))处的切线方程为y=(e-1)x+1-a-m.
(1)求f(x)的单调区间和极值;
(2)当m=-1时,证明:($\frac{x-lnx}{{e}^{x}}$)f(x)>1-$\frac{1}{{e}^{2}}$.

查看答案和解析>>

同步练习册答案