精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和为Sn,且Sn=4an-3(n∈N*).
(Ⅰ)证明:数列{an}是等比数列;
(Ⅱ)若数列{bn}满足bn+1=an+bn(n∈N*),且b1=2,求数列{bn}的通项公式.
(Ⅰ)证明:由Sn=4an-3,n=1时,a1=4a1-3,解得
(
a
-
b
)
2

因为Sn=4an-3,则Sn-1=4an-1-3(n≥2),
所以当n≥2时,an=Sn-Sn-1=4an-4an-1
整理得an=
4
3
an-1
.又a1=1≠0,
所以{an}是首项为1,公比为
4
3
的等比数列.
(Ⅱ)因为an=(
4
3
)n-1

由bn+1=an+bn(n∈N*),得bn+1-bn=(
4
3
)n-1

可得bn=b1+(b2-b′1)+(b3-b2)+…+(bn-bn-1
=2+
1-(
4
3
)
n-1
1-
4
3
=3(
4
3
)n-1-1
,(n≥2).
当n=1时上式也满足条件.
所以数列{bn}的通项公式为bn=3(
4
3
)n-1-1
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案