已知,函数.
(1)求的极值;
(2)若在上为单调递增函数,求的取值范围;
(3)设,若在(是自然对数的底数)上至少存在一个,使得成立,求的取值范围。
(1) 无极大值(2)(3)
解析试题分析:(1)由题意,,,
∴当时,;当时,,
所以,在上是减函数,在上是增函数,
故 无极大值. …4分
(2),,
由于在内为单调增函数,所以在上恒成立,
即在上恒成立,故,所以的取值范围是.…………………9分
(3)构造函数,
当时,由得,,,所以在上不存在一个,使得.
当时,,
因为,所以,,
所以在上恒成立,
故在上单调递增,,
所以要在上存在一个,使得,必须且只需,
解得,故的取值范围是. …14分
另法:(Ⅲ)当时,.
当时,由,得 ,
令,则,
所以在上递减,.
综上,要在上存在一个,使得,必须且只需.
考点:本小题主要考查利用导数求函数的单调区间,利用导数判断函数的单调性,解决有关方程的综合问题.
点评:纵观历年高考试题,利用导数讨论函数单调区间是函数考查的主要形式,是高考热点,是解答题中的必考题目,在复习中必须加强研究,进行专题训练,熟练掌握利用导数判断函数单调区间的方法,总结函数单调性应用的题型、解法,并通过加大训练强度提高解题能力.
科目:高中数学 来源: 题型:解答题
(本小题满分16分)
已知函数,,.
(1)当时,若函数在区间上是单调增函数,试求的取值范围;
(2)当时,直接写出(不需给出演算步骤)函数 ()的单调增区间;
(3)如果存在实数,使函数,()在
处取得最小值,试求实数的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题14分)设函数.
(Ⅰ)讨论的单调性;
(Ⅱ)已知,若函数的图象总在直线的下方,求的取值范围;
(Ⅲ)记为函数的导函数.若,试问:在区间上是否存在()个正数…,使得成立?请证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分14分)
已知函数(),.
(Ⅰ)当时,解关于的不等式:;
(Ⅱ)当时,记,过点是否存在函数图象的切线?若存在,有多少条?若不存在,说明理由;
(Ⅲ)若是使恒成立的最小值,对任意,
试比较与的大小(常数).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)设函数。
(1)若在处取得极值,求的值;
(2)若在定义域内为增函数,求的取值范围;
(3)设,当时,
求证:① 在其定义域内恒成立;
求证:② 。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com