精英家教网 > 高中数学 > 题目详情
已知,若不等式m2+6m-x-y<0恒成立,则实数m的取值范围是   
【答案】分析:可得x+y=(x+y)()=10+,利用基本不等式可求x+y得最小值,而m2+6m-x-y<0恒成立?m2+6m<x+y恒成立?m2+6m<(x+y)min,从而可求m的范围
解答:解:∵
∴x+y=(x+y)()=10+
当且仅当即y2=9x2时取等号“=”
,此时x=4,y=12
∵m2+6m-x-y<0恒成立即m2+6m<x+y恒成立
只要使m2+6m<(x+y)min=16
由m2+6m<16可得-8<m<2
故答案为:-8<m<2
点评:本题主要考查了函数的恒成立问题m≤f(x)恒成立?m≤f(x)得最小值(m≥f(x)恒成立?m≥f(x)的最大值),体现出函数 恒成立与最值的相互转化,解题的关键是利用“1”的变形及基本不等式求解函数的最小值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的奇函数f(x)=
-2x+b
2x+1+a

(1)求a、b的值;
(2)若不等式-m2+(k+2)m-
3
2
<f(x)<m2+2km+k+
5
2
对一切实数x及m恒成立,求实数k的取值范围;
(3)若函数g(x)是定义在R上的周期为2的奇函数,且当x∈(-1,1)时,g(x)=f(x)-x,求方程g(x)=0的所有解.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x>0,y>0,
1
x
+
9
y
=1
,若不等式m2+6m-x-y<0恒成立,则实数m的取值范围是
-8<m<2
-8<m<2

查看答案和解析>>

科目:高中数学 来源: 题型:

(A类)定义在R上的函数y=f(x),对任意的a,b∈R,满足f(a+b)=f(a)•f(b),当x>0时,有f(x)>1,其中f(1)=2
(1)求f(0)、f(-1)的值;  (2)证明y=f(x)在(0,+∞)上是增函数;(3)求不等式f(x+1)<4的解集.
(B类)已知定义在R上的奇函数f(x)= 
-2x+b
2x+1+a

(1)求a,b的值;
(2)若不等式-m2+(k+2)m-
3
2
<f(x)<m2+2km+k+
5
2
对一切实数x及m恒成立,求实数k的取值范围;
(3)定义:若存在一个非零常数T,使得f(x+T)=f(x)对定义域中的任何实数x都恒成立,那么,我们把f(x)叫以T为周期的周期函数,它特别有性质:对定义域中的任意x,f(x+nT)=f(x),(n∈Z).若函数g(x0是定义在R上的周期为2的奇函数,且当x∈(-1,1)时,g(x)=f(x)-x,求方程g(x)=0的所有解.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一元二次函数f(x)=ax2+bx+c(a>0,c>0)的图象与x轴有两个不同的公共点,其中一个公共点的坐标为(c,0),且当0<x<c时,恒有f(x)>0.
(1)当a=1,c=
12
时,求出不等式f(x)<0的解;
(2)求出不等式f(x)<0的解(用a,c表示);
(3)若以二次函数的图象与坐标轴的三个交点为顶点的三角形的面积为8,求a的取值范围;
(4)若不等式m2-2km+1+b+ac≥0对所有k∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案