精英家教网 > 高中数学 > 题目详情
11.已知集合M={x|-5<x<5},集合P={x|-7<x<a},集合S={x|b<x<2},且M∩P=S,则a、b的值分别为2;-5.

分析 根据M,P,S,以及M∩P=S,利用交集的定义求出a与b的值即可.

解答 解:∵M={x|-5<x<5},集合P={x|-7<x<a},集合S={x|b<x<2},且M∩P=S,
∴a=2,b=-5,
故答案为:2;-5

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知圆C:x2+y2-6x-8y+21=0和直线kx-y-4k+3=0.
(1)证明:不论k取何值,直线l和圆C总相交;
(2)当k取何值时,圆C被直线l截得的弦长最短?并求最短的弦的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知抛物线C:y2=2px(p>0)的焦点为F,过点F作斜率为k1的直线与抛物线C交于A,B两点,A,B两点到x轴的距离之积为2p.
(1)求抛物线C的方程;
(2)若M点的坐标为(4,0),延长AM,BM交抛物线于C,D两点,设直线CD的斜率为k2,求$\frac{{k}_{1}}{{k}_{2}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.偶函数f(x)的定义域为R,若f(x+2)为奇函数,且f(1)=1,则f(2014)+f(2015)=(  )
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,角A、B、C的对边分别为a,b,c,已知tanA=$\frac{1}{3}$,设向量$\overrightarrow{x}$=(3a,cosA),$\overrightarrow{y}$=(2c,cosc),且$\overrightarrow{x}$∥$\overrightarrow{y}$.
(1)若b=$\sqrt{5}$,求c2-a2的值;
(2)求B的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知sin(α+β)=$\frac{4}{5}$,cosβ=-$\frac{5}{13}$,α∈(0,$\frac{π}{2}$),β∈($\frac{π}{2}$,π),求sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知f(x)+3f(-x)=2x+1,则f(x)的解析式是(  )
A.f(x)=x+$\frac{1}{4}$B.f(x)=-2x+$\frac{1}{4}$C.f(x)=-x+$\frac{1}{4}$D.f(x)=-x+$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.游泳池应定期换水,某游泳池在一次换水前存水936m3,换水时打开排水孔,以每小时312m3的速度将水放出.设放水时间为t h,游泳池内的剩余水量为Q m3
(1)求Q关于t的函数解析式和自变量t的取值范围.
(2)放水1h后,游泳池内还剩水多少立方米?
(3)当游泳池内的水量为312m3时,需放水多少时间?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f($\sqrt{x}$+1)=x+2$\sqrt{x}$,求f(x+1)

查看答案和解析>>

同步练习册答案