精英家教网 > 高中数学 > 题目详情
如图,A、B、C、D有四个区域,用红黄蓝三种色涂上,要求任意两个相邻区域的颜色各不相同,共有
18
18
  种不同的涂法?
分析:先分析于A区域,3种颜色可选,即有3种涂法方案,再分①若AD区域涂不同的颜色,②若AD号区域涂相同的颜色,两种情况讨论其他区域的涂色方案,由分类计数原理可得其他个区域的涂色方案的数目
解答:解:①若AD同色,则有
C
1
3
C
1
2
C
1
1
C
1
1
=6种涂色方法
②若AD不同色,则有
C
1
3
C
1
2
C
1
1
C
1
2
=12种涂色方法
共由18种
故答案为:18
点评:本题考查分步计数原理与分类计数原理的综合运用,注意4个区域的位置关系即可
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、如图,A,B,C,D四点都在平面a,b外,它们在a内的射影A1,B1,C1,D1是平行四边形的四个顶点,在b内的射影A2,B2,C2,D2在一条直线上,求证:ABCD是平行四边形.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,A,B,C,D为空间四点,在△ABC中,AB=2,AC=BC=
2
.等边三角形ADB以AB为轴运动.当CD=
 
时,面ACD⊥面ADB.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,A,B,C,D为空间四点.在△ABC中,AB=2,AC=BC=
2

等边三角形ADB以AB为轴运动.
(Ⅰ)当平面ADB⊥平面ABC时,求CD;
(Ⅱ)当△ADB转动时,是否总有AB⊥CD?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,A、B、C、D是某煤矿的四个采煤点,l是公路,图中所标线段为道路,ABQP、BCRQ、CDSR近似于正方形.已知A、B、C、D四个采煤点每天的采煤量之比约为5:1:2:3,运煤的费用与运煤的路程、所运煤的重量都成正比.现要从P、Q、R、S中选出一处设立一个运煤中转站,使四个采煤点的煤运到中转站的费用最少,则地点应选在(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•房山区二模)如图,A,B,C,D是⊙O上的四个点,过点B的切线与DC的延长线交于点E.若∠BCD=110°,则∠DBE=(  )

查看答案和解析>>

同步练习册答案