精英家教网 > 高中数学 > 题目详情
已知直角梯形ABCD中,AB∥CD,∠BAD=90°,且AB=2,AD=3,CD=1,点E、F分别在AD、BC上,满足.现将此梯形沿EF折叠成如图所示图形,且使
(1)求证:AE⊥平面ABCD;
(2)求二面角D-CE-A的大小.

【答案】分析:(1)欲证AE⊥平面ABCD,根据直线与平面垂直的判定定理可知只需证AE与平面ABCD内两相交直线垂直,而EA⊥AD,EA⊥AB,AB∩AD=A,满足定理条件
(2)由图,可以A为原点,建立空间直角坐标系,写出各点的坐标,由向量运算求出两个平面的法向量,再由数量积公式求出两个平面的夹角的余弦值.
解答:解:(1)折叠后由已知:,DE=2,,∴AE2+AD2=DE2,即:AE⊥AD,又AE⊥AB,AD∩AB=A,∴AE⊥平面ABCD
(2)(Ⅱ)解:以点A为坐标原点,建立如图空间直角坐标系,

=(0,1,0),=(-,0,1)
设平面DCE的一个法向量为=(x,y,z),则
取x=1则得出=(1,0,
设平面CEA的一个法向量为=(x′,y′,z′)
==(0,0,1)

取x=1,则得=(1,-,0)
==
所以二面角D-CE-A的大小
点评:本题考查直线与平面垂直的判定,用空间向量求二面角的夹角.考查考查空间想象、推理论证、计算能力.利用向量求解决立体几何问题是近几年高考的热点,向量法解决立体几何问题降低了思维难度,化推理为计算,使得几何求解、证明变得简单,此法也有不足,需要建立坐标系,且运算量较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+
3
,过A作AE⊥CD,垂足为E,G、F分别为AD、CE的中点,现将△ADE沿AE折叠,使得DE⊥EC.
(1)求证:BC⊥面CDE;
(2)求证:FG∥面BCD.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+
3
,过A作AE⊥CD,垂足为E,G、F分别为AD、CE的中点,现将△ADE沿AE折叠,使得DE⊥EC.
(1)求证:FG∥面BCD;
(2)设四棱锥D-ABCE的体积为V,其外接球体积为V′,求V:V′的值.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+
3
,过A作AE⊥CD,垂足为E,G、F分别为AD、CE的中点,现将△ADE沿AE折叠,使DE⊥EC.
(1)求证:BC⊥平面CDE;
(2)求证:FG∥平面BCD;
(3)求四棱锥D-ABCE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直角梯形ABCD中,AB∥CD,∠BAD=90°,且AB=2,AD=3,CD=1,点E、F分别在AD、BC上,满足AE=
1
3
AD,BF=
1
3
BC
.现将此梯形沿EF折叠成如图所示图形,且使AD=
3

(1)求证:AE⊥平面ABCD;
(2)求二面角D-CE-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知直角梯形ABCD的上底BC=
2
,BC∥AD,BC=
1
2
AD
CD⊥AD,PDC⊥,平面平面ABCD,△PCD是边长为2的等边三角形.
(1)证明:AB⊥PB;
(2)求二面角P-AB-D的大小.
(3)求三棱锥A-PBD的体积.

查看答案和解析>>

同步练习册答案
关 闭