精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的中心在原点,焦点在轴上,离心率为若抛物线的焦点与椭圆的一个焦点重合.

(1)求椭圆的标准方程

(2)过椭圆的左焦点,且斜率为的直线交椭圆于 两点,求的面积.

【答案】(1) (2)

【解析】试题分析:(1)求出抛物线的焦点坐标,得出椭圆的焦点,根据离心率,求出的值,再算出,得到椭圆的方程;(2)设A,B的横坐标分别为,求出直线m的方程,联立直线和椭圆方程,由韦达定理,求出,计算出弦长 到直线的距离,算出的面积。

试题解析:(1)由题意,设所求椭圆标准方程为: ,焦距为

抛物线的焦点为

又离心率

再由

所求椭圆标准方程为:

2)由(1)知:左焦点为,直线m的方程为:

由弦长公式

到直线的距离

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某家庭进行理财投资根据长期收益率市场预测投资类产品的收益与投资额成正比投资类产品的收益与投资额的算术平方根成正比已知投资1万元时两类产品的收益分别为0125万元和05万元

1分别写出两类产品的收益与投资额的函数关系;

2该家庭有20万元资金全部用于理财投资问:怎么分配资金能使投资获得最大收益其最大收益是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a,b,c均为正数,且a+b+c=1.证明:
(1)
(2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:在四棱锥中,底面为菱形,且 底面

上点,且平面.

(1)求证: ;(2)求三棱锥的体积.

【答案】(1)见解析;(2).

【解析】试题分析:(1)根据菱形性质得对角线相互垂直,根据底面,再根据线面垂直判定定理得即可得结果(2)记的交点为,则BD 为高,三角形POE为底,根据锥体体积公式求体积

试题解析:(1)

(2)记的交点为,连接

平面

中:

中: ,则,即

型】解答
束】
21

【题目】已知椭圆 的离心率,且其的短轴长等于.

(1)求椭圆的标准方程;

(2)如图,记圆 ,过定点作相互垂直的直线,直线(斜率)与圆和椭圆分别交于两点,直线与圆和椭圆分别交于两点,若面积之比等于,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据某气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时间t(h)的函数图象如图所示.过线段OC上一点T(t,0)作横轴的垂线l,梯形OABC在直线l左侧部分的面积即时间t(h)内沙尘暴所经过的路程s(km)

(1)t4时,求s的值;

(2)st变化的规律用数学关系式表示出来;

(3)N城位于M地正南方向,且距M650 km,试判断这场沙尘暴是否会侵袭到N城,如果会,在沙尘暴发生后多长时间它将侵袭到N城?如果不会,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了月份每月号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:

日期

昼夜温差

就诊人数(个)

16

该兴趣小组确定的研究方案是:先从这六组数据中选取组,用剩下的组数据求线性回归方程,再用被选取的组数据进行检验.

(1)求选取的2组数据恰好是相邻两个月的概率;

(2)若选取的是月与月的两组数据,请根据月份的数据,求出 关于的线性回归方程

(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过人,则认为得到的线性回归方程是理想的,试问(2)中所得线性回归方程是否理想?

参考公式:

img src="http://thumb.zyjl.cn/questionBank/Upload/2018/08/07/18/7f4fe67a/SYS201808071848019525920497_ST/SYS201808071848019525920497_ST.020.png" width="244" height="61" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点到定点的距离和它到直线的距离的比值为常数,记动点的轨迹为曲线.

(1)求曲线的方程;

(2)若直线与曲线相交于不同的两点 ,直线与曲线相交于不同的两点 ,且,求以 为顶点的凸四边形的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,短轴长为.

(1)求椭圆的方程;

(2)设 是椭圆上关于轴对称的任意两个不同的点,连接交椭圆于另一点,证明直线轴相交于定点

(3)在(2)的条件下,过点的直线与椭圆交于 两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线及点.

(1)求经过点且与直线平行的直线方程

(2)求经过点且倾斜角为直线的倾斜角的倍的直线方程.

查看答案和解析>>

同步练习册答案