精英家教网 > 高中数学 > 题目详情
已知椭圆的中心在原点.离心率为
1
2
,一个焦点F(-1,0).
(Ⅰ)求椭圆的方程;
(Ⅱ)设Q是椭圆上一点,过F,Q的直线l与y轴交于点M,若|
MQ|
|=2|
QF
|,求直线l的斜率.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(Ⅰ)设椭圆方程为
x2
a2
+
y2
b2
=1
,(a>b>0)由题意,得
c
a
=
1
2
c=1
,由此能求出椭圆方程.
(Ⅱ)由|
MQ|
|=2|
QF
|,知
MQ
=2
QF
,或
MQ
=2
FQ
,当
MQ
=2
QF
时,xQ=-
2
3
yQ=
k
3
,能求出k=±2
6
.当
MQ
=2
FQ
时,xQ=-2,yQ=0,此时k=0.由此能求出直线l的斜率.
解答: 解:(Ⅰ)设椭圆方程为
x2
a2
+
y2
b2
=1
,(a>b>0)
由题意,得
c
a
=
1
2
c=1
,解得a=2,c=1,b2=4-1=3,
∴椭圆方程为
x2
4
+
y2
3
=1

(Ⅱ)∵|
MQ|
|=2|
QF
|,∴
MQ
=2
QF
,或
MQ
=2
FQ

MQ
=2
QF
时,点Q分
MF
的比为2,
xQ=-
2
3
yQ=
k
3

又点Q在椭圆上,
代入椭圆方程,得
(-
2
3
)2
4
+
(
k
3
)2
3
=1
,解得k=±2
6

MQ
=2
FQ
时,xQ=-2,yQ=0,此时k=0.
∴直线l的斜率为±2
6
或0.
点评:本题考查椭圆方程的求法,考查直线的斜率的求法,是中档题,解题时要认真审题,注意分类讨论思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果命题“¬(p∧q)”为假命题,则(  )
A、p、q均为真命题
B、p、q均为假命题
C、p、q至少有一个为真命题
D、p、q至多有一个为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)=f(4-x),且f(2-x)+f(x-2)=0,求f(2012)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设两数列{an}、{bn}分别满足an+1=an+2n,bn+1=bn+2(n∈N+),且a1=b1=1.
(1)求数列{an}的通项公式;
(2)求数列{
1
an+bn
}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:mx-2y+2m=0(m∈R)和椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),椭圆C的离心率为
2
2
,连接椭圆的四个顶点形成四边形的面积为2
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l与椭圆C交于A,B两点,若以线段AB为直径的圆过原点O,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C经过点(
2
2
2
),且与双曲线x2-
y2
2
=1共焦点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过椭圆C的右焦点F作直线l交椭圆C于M、N两点,交y轴于P点,且记
PM
1
PM
PN
2
NF
,求证:λ12为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在长方形ABCD中,AB=2BC,E为CD的中点.将△AED沿AE折起,使平面ADE⊥平面ABCE,连接DB、DC、EB.
(1)求证:CE∥平面ABD;
(2)求证:平面ABD⊥平面BDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

在棱长为2的正方体ABCD-A1B1C1D1中,O为正方形A1B1C1D1的中心,点P在棱CC1上,且CC1=2PC.
(1)求直线AP与平面BCC1B1所成角的余弦值;
(2)求二面角P-AD1-D的平面角的余弦值;
(3)求点O到平面AD1P的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a+b+c=1,若不等式2a2+3b2+c2≥|x+1|对a,b,c∈R恒成立,求实数x的取值范围.

查看答案和解析>>

同步练习册答案