精英家教网 > 高中数学 > 题目详情
定义在R上的函数f(x)=f(4-x),且f(2-x)+f(x-2)=0,求f(2012)的值.
考点:抽象函数及其应用
专题:计算题,函数的性质及应用
分析:将等式f (2-x)+f (x-2)=0的x用x+2代替得到函数为奇函数;利用奇函数化简等式f(x)=f (4-x);得到函数是周期函数,利用函数的周期求出f(2012).
解答: 解:∵f (2-x)+f (x-2)=0
∴f(x-2)=-f(2-x)
将x用x+2代替得到f(x)=-f(-x)
∴f(x)为奇函数
∵f(x)=f (4-x)
f(x)=-f(x-4)
将x用x+4代替得f(x+4)=-f(x)
∴f(x+4)=f(x-4)
∴函数以8为周期
∴f(2012)=f(4)=f(0)=0.
点评:本题考查对于抽象函数常通过给已知等式中的自变量赋值得到新等式,研究出函数的性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线的顶点在原点,焦点在y轴上,抛物线上的点P(m,-3)到焦点的距离等于5,则m等于(  )
A、2
6
B、±2
C、±
9
8
D、±2
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
64
-
y2
36
=1上点P到右焦点的距离为14,则其到左焦点距离(  )
A、30B、30或2
C、6或22D、22

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0)上点M(3,m)到焦点F的距离为4.
(Ⅰ)求抛物线方程;
(Ⅱ)点P为准线上任意一点,AB为抛物线上过焦点的任意一条弦,设直线PA,PB,PF的斜率为k1,k2,k3,问是否存在实数λ,使得k1+k2=λk3恒成立.若存在,请求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

从1到9的九个数字中取三个偶数四个奇数,试问:
(Ⅰ)能组成多少个没有重复数字的七位数?
(Ⅱ)在(Ⅰ)中的七位数中三个偶数排在一起的有几个?
(Ⅲ)在(Ⅰ)中的七位数中,偶数排在一起、奇数也排在一起的有几个?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的焦点坐标分别为(
3
,0)(-
3
,0),长轴是短轴的两倍. 
(1)求椭圆C的方程; 
(2)在y的正半轴上是否存在一点P(0,p),过定点P作任意一条直线与椭圆C交于两点S,T,使得
OS
OT
为一个定值.若存在,请求出点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
1
2
,右顶点M的坐标为(2,0),直线l过左焦点F交椭圆于A,B两点,直线MA,MB分别交直线x=-4于C,D两点.
(1)求椭圆方程;
(2)当l⊥x轴时,求证:CF⊥DF;
(3)求证:以线段CD为直径的圆恒过两个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点.离心率为
1
2
,一个焦点F(-1,0).
(Ⅰ)求椭圆的方程;
(Ⅱ)设Q是椭圆上一点,过F,Q的直线l与y轴交于点M,若|
MQ|
|=2|
QF
|,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上.
(1)求证:平面AEC⊥平面PDB;
(2)当PD=
2
AB=2
,且VA-PED=
1
3
时,确定点E的位置,即求出
PE
EB
的值.
(3)在(2)的条件下若F是PD的靠近P的一个三等分点,求二面角A-EF-D的余弦值.

查看答案和解析>>

同步练习册答案