精英家教网 > 高中数学 > 题目详情
16.已知复数i•(1+ai)为纯虚数,那么实数a的值为(  )
A.-1B.0C.1D.2

分析 直接利用复数代数形式的乘除运算化简,然后由实部为0求得a的值.

解答 解:∵i•(1+ai)=-a+i为纯虚数,
∴-a=0,即a=0.
故选:B.

点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|x-1|+|x-a|.(a>1)
(1)若不等式f(x)≥2的解集为{x|x≤$\frac{1}{2}$或x$≥\frac{5}{2}$},求a的值;
(2)?x∈R,f(x)+|x-1|≥1,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若函数f(x)满足:?x∈R,f(2x)=sinx+f(x),且f(1)=1,则(  )
A.f($\frac{1}{{2}^{2016}}$)<$\frac{1}{{2}^{2016}}$B.f($\frac{1}{{2}^{2015}}$)<$\frac{1}{{2}^{2016}}$
C.f($\frac{1}{{2}^{2014}}$)<$\frac{1}{4}$+$\frac{3}{{2}^{2016}}$D.f($\frac{1}{{2}^{2013}}$)>$\frac{1}{4}$+$\frac{3}{{2}^{2015}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<π),若对满足|f(x1)-f(x2)|=2的x1,x2有|x1-x2|min=π,且函数f(x)的部分图象如图,则函数f(x)的解析式为(  )
A.f(x)=sin(x+$\frac{5π}{6}$)B.f(x)=sin(x-$\frac{π}{6}$)C.f(x)=sin(2x+$\frac{2π}{3}$)D.f(x)=sin(2x-$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.集合A={x|-1<x<3},集合B={x|$\frac{1}{3}<{3}^{x}<9$},则A∩B=(  )
A.(1,2)B.(-1,2)C.(1,3)D.(-1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.“爱心包裹”是中国扶贫基金会依托中国邮政发起的一项全民公益活动,社会各界爱心人士只需通过中国邮政网点捐购统一的爱心包裹,就可以一对一地将自己的关爱送给需要帮助的人.某高校青年志愿者协会响应号召,组织大一学生作为志愿者,开展一次爱心包裹劝募活动.将派出的志愿者分成甲、乙两个小组,分别在两个不同的场地进行劝募,每个小组各6人.爱心人士每捐购一个爱心包裹,志愿者就将送出一个钥匙扣作为纪念.以下茎叶图记录了这两个小组成员某天劝募包裹时送出钥匙扣的个数,且图中甲组的一个数据模糊不清,用x表示.已知甲组送出钥匙扣的平均数比乙组的平均数少1个.
(Ⅰ) 求图中x的值;
(Ⅱ)“爱心包裹”分为价值100元的学习包,和价值200元的“学习+生活”包,在乙组劝募的爱心包裹中100元和200元的比例为3:1,若乙组送出的钥匙扣的个数即为爱心包裹的个数,求乙组全体成员劝募的爱心包裹的价值总额;
(Ⅲ)在甲组中任选2位志愿者,求他们送出的钥匙扣个数都多于乙组的平均数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知两个不相等的非零向量$\overrightarrow{a},\overrightarrow{b}$,两组向量$\overrightarrow{{x}_{1}},\overrightarrow{{x}_{2}},\overrightarrow{{x}_{3}},\overrightarrow{{x}_{4}},\overrightarrow{{x}_{5}}$和$\overrightarrow{{y}_{1}},\overrightarrow{{y}_{2}},\overrightarrow{{y}_{3}},\overrightarrow{{y}_{4}},\overrightarrow{{y}_{5}}$均由2个$\overrightarrow{a}$和3个$\overrightarrow{b}$排成一列而成.记$\overrightarrow{{x}_{1}}•\overrightarrow{{y}_{1}}+\overrightarrow{{x}_{2}}•\overrightarrow{{y}_{2}}+\overrightarrow{{x}_{3}}•\overrightarrow{{y}_{3}}+\overrightarrow{{x}_{4}}•\overrightarrow{{y}_{4}}+\overrightarrow{{x}_{5}•\overrightarrow{{y}_{5}}}$,Smin表示S所有可能取值中的最小值,则下列正确的是(  )
A.${S_{min}}={a^2}+2ab+2{b^2}$B.${S_{min}}=2{a^2}+3{b^2}$
C.若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则Smin与|$\overrightarrow{a}$|无关D.S有5个不同的值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.执行如图所示的程序框图,如果输入n的值为4,则输出的S的值为(  )
A.15B.6C.-10D.-21

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,直三棱柱ABC-A1B1C1中,AB=BC,AC=AA1=2$\sqrt{2}$,E为A1C上一点,且A1C=4EC,F为AC的中点.
(1)证明:A1C⊥平面BEF;
(2)若平面A1BC⊥平面A1B1BA,求三棱柱ABC-A1B1C1的体积.

查看答案和解析>>

同步练习册答案