精英家教网 > 高中数学 > 题目详情
6.如图,直三棱柱ABC-A1B1C1中,AB=BC,AC=AA1=2$\sqrt{2}$,E为A1C上一点,且A1C=4EC,F为AC的中点.
(1)证明:A1C⊥平面BEF;
(2)若平面A1BC⊥平面A1B1BA,求三棱柱ABC-A1B1C1的体积.

分析 (1)连结BF,由AA1⊥平面ABC得AA1⊥BF,通过计算CF,CE可发现$\frac{CF}{{A}_{1}C}$=$\frac{CE}{AC}$=$\frac{\sqrt{2}}{4}$,故△CEF∽△CAA1,故∠CEF=∠CAA1=90°,故A1C⊥EF,于是A1C⊥平面BEF;
(2)由面面垂直的性质可得BC⊥平面A1B1BA,于是AB⊥BC,求出底面积即可求出棱柱的体积.

解答 (1)证明连结BF,
∵AA1⊥平面ABC,BF?平面ABC,
∴AA1⊥BF,
∵AB=BC,F是AC的中点,
∴AC⊥BF,
又AC?平面A1CA,A1A?平面A1CA,AC∩AA1=A,
∴BF⊥平面A1CA,∵A1C?平面A1CA,
∴BF⊥A1C.
∵AC=A1A=2$\sqrt{2}$,AC⊥A1A,F是AC的中点,A1C=4EC,
∴A1C=4,CF=$\sqrt{2}$,CE=1.
∴$\frac{CF}{{A}_{1}C}$=$\frac{CE}{AC}$=$\frac{\sqrt{2}}{4}$.
∴△CEF∽△CAA1
∴A1C⊥EF,又EF?平面BEF,BF?平面BEF,EF∩BF=F,
∴A1C⊥平面BEF.
(2)∵平面A1BC⊥平面A1B1BA,平面ABC⊥平面A1B1BA,平面ABC∩平面A1BC=BC,
∴BC⊥平面A1B1BA,∵AB?平面A1B1BA,
∴BC⊥AB.又∵AC=2$\sqrt{2}$,AB=BC,
∴AB=BC=2.
∴三棱柱ABC-A1B1C1的体积V=S△ABC•AA1=$\frac{1}{2}×{2}^{2}×2\sqrt{2}$=4$\sqrt{2}$.

点评 本题考查了线面垂直的性质与判定,棱柱的体积计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知复数i•(1+ai)为纯虚数,那么实数a的值为(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知曲线y=f(x)=$\frac{1}{x}$.
(1)求曲线在点P(1,1)处的切线方程;
(2)求曲线过点Q(1,0)的切线方程;
(3)求满足斜率为-$\frac{1}{2}$的曲线的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=$\frac{{x}^{2}}{x-1}$对于任意的x1,x2,x3∈[2,2+m],恒有f(x1)+f(x2)≥f(x3),则m的取值范围是0<m$≤2\sqrt{2}+2$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.袋子中装有大小相同的6个小球,2红1黑3白,现从中有放回的随机摸球2此,每次摸出1个小球,则2次摸球颜色不同的概率是(  )
A.$\frac{5}{9}$B.$\frac{2}{3}$C.$\frac{11}{18}$D.$\frac{13}{18}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x2+ax+b,g(x)=2x2+2,存在实数b,使得对任意x∈R,有-g(x)≤f(x)≤g(x).
(Ⅰ)求a的取值范围;
(Ⅱ)若方程f(x)-x=0有两个实数根x1,x2,求|x1-x2|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若a为正实数,2a2+3b2=1,则a$\sqrt{2+{b}^{2}}$的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数f(x)对x≠0的实数满足f(x)-2f($\frac{1}{x}$)=3x+2,那么${∫}_{1}^{2}$f(x)dx=(  )
A.-($\frac{7}{2}$+2ln2)B.$\frac{7}{2}$+2ln2C.-($\frac{7}{2}$+ln2)D.-(4+2ln2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.计算下列各式中x的值.
(1)log381=x.
(2)log8x=2.
(3)logx2=8.

查看答案和解析>>

同步练习册答案