精英家教网 > 高中数学 > 题目详情
设函数f(x)=x2-2x+alnx.
(1)若函数f(x)是定义域上的单调函数,求实数a的取值范围;
(2)求函数f(x)的极值点.
(1)f′(x)=2x-2+
a
x
=
2x2-2x+a
x

若函数f(x)是定义域上的单调函数,则只能f′(x)≥0在(0,+∞)上恒成立,
即2x2-2x+a≥0在(0,+∞)上恒成立恒成立,
令g(x)=2x2-2x+a,则函数g(x)图象的对称轴方程是x=
1
2

故只要△=4-8a≤0恒成立,即只要a≥
1
2

(2)有(1)知当a≥
1
2
时,f′(x)=0的点是导数不变号的点,
a≥
1
2
时,函数无极值点;
a<
1
2
时,f'(x)=0的根是x1=
1-
1-2a
2
x2=
1+
1-2a
2

若a≤0,
1-2a
≥1
,此时x1≤0,x2>0,且在(0,x2)上f′(x)<0,
在(x2,+∞)上f'(x)>0,故函数f(x)有唯一的极小值点x2=
1+
1-2a
2

0<a<
1
2
时,0<
1-2a
<1

此时x1>0,x2>0,f′(x)在(0,x1),(x2,+∞)都大于0,f′(x)在(x1,x2)上小于0,
此时f(x)有一个极大值点x1=
1-
1-2a
2
和一个极小值点x2=
1+
1-2a
2

综上可知,a≤0时,f(x)在(0,+∞)上有唯一的极小值点x2=
1+
1-2a
2

0<a<
1
2
时,f(x)有一个极大值点x1=
1-
1-2a
2
和一个极小值点x2=
1+
1-2a
2

a≥
1
2
时,函数f(x)在(0,+∞)上无极值点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x2+|x-2|-1,x∈R.
(1)判断函数f(x)的奇偶性;
(2)求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0与g(x0)<0同时成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+aln(x+1),a∈R.(注:(ln(x+1))′=
1x+1
).
(1)讨论f(x)的单调性.
(2)若f(x)有两个极值点x1,x2,且x1<x2,求f(x2)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-mlnx,h(x)=x2-x+a.
(1)若曲线y=f(x)在x=1处的切线为y=x,求实数m的值;
(2)当m=2时,若方程f(x)-h(x)=0在[1,3]上恰好有两个不同的实数解,求实数a的取值范围;
(3)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+x+aln(x+1),其中a≠0.
(1)若a=-6,求f(x)在[0,3]上的最值;
(2)若f(x)在定义域内既有极大值又有极小值,求实数a的取值范围;
(3)求证:不等式ln
n+1
n
n-1
n3
(n∈N*)恒成立.

查看答案和解析>>

同步练习册答案