精英家教网 > 高中数学 > 题目详情
10.直线y=$\frac{1}{2}$x+b是曲线y=ln x(x>0)的一条切线,则 实数b的值为(  )
A.2B.ln 2+1C.ln 2-1D.ln 2

分析 设出切点坐标,求出函数y=lnx的导函数,可得过切点处的直线的斜率为$\frac{1}{2}$,再与切点在直线上联立求解b值.

解答 解:设切点为(x0,lnx0),
由y=ln x,得y′=$\frac{1}{x}$,
∴$y′{|}_{x={x}_{0}}=\frac{1}{{x}_{0}}$,
则$\left\{\begin{array}{l}{ln{x}_{0}=\frac{1}{2}{x}_{0}+b}\\{\frac{1}{{x}_{0}}=\frac{1}{2}}\end{array}\right.$,解得b=ln2-1.
故选:C.

点评 本题考查利用导数研究过曲线上某点处的切线方程,过曲线上某点处的切线的斜率,就是函数在该点处的导数值,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知a>0,($\frac{a}{\sqrt{x}}$-x)6展开式的常数项为240,则${∫}_{-a}^{a}$(x2+x+$\sqrt{4-{x}^{2}}$)dx=$\frac{16}{3}$+2π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=Asin(ωx+φ),其中ω>0,A>0,-$\frac{π}{2}$<φ<0,x∈R且函数f(x)的最小值为-$\frac{\sqrt{2}}{2}$,相邻两条对称轴之间的距离为$\frac{π}{2}$,满足f($\frac{π}{4}$)=$\frac{1}{2}$
(1)求f(x)的解析式;
(2)若对任意实数x∈[$\frac{π}{6}$,$\frac{π}{3}$],不等式f(x)-m<$\frac{3}{2}$恒成立,求实数m的取值范围;
(3)设0<x≤$\frac{π}{2}$,且方程f(x)=m有两个不同的实数根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在中国古代的历法中,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫作“十二地支”.古人用天干地支来表示年、月、日、时,十天干和十二地支进行循环组合:甲子、乙丑、丙寅…一直到癸亥,共得到60个组合,称为六十甲子.如果2016年是丙申年,那么1958年是(  )
A.乙未年B.丁酉年C.戊戌年D.己亥年

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.过抛物线C:y2=4x的焦点F作直线l交C于A,B两点,若$|{AF}|=\frac{3}{2}$,则|BF|=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=x3-6x+5,x∈R
(1)求f(x)的单调区间;
(2)求f(x)的极大值和极小值;
(3)若关于x的方程f(x)=a有三个不同的实数根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.从3男1女共4名学生中选出2人参加学校组织的环保活动,则女生被选中的概率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=sinxcosx+sinx+cosx(x∈R)的最大值是$\frac{1}{2}+\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=2x-lnx的单调递增区间是$(\frac{1}{2},+∞)$.

查看答案和解析>>

同步练习册答案