精英家教网 > 高中数学 > 题目详情
15.设函数f(x)=x3-6x+5,x∈R
(1)求f(x)的单调区间;
(2)求f(x)的极大值和极小值;
(3)若关于x的方程f(x)=a有三个不同的实数根,求实数a的取值范围.

分析 (1)首先求出函数的导数,然后根据导数与单调区间的关系确定函数的单调区间;
(2)根据函数的单调性求出函数的极值即可;
(3)由(1)(2)的分析可知y=f(x)图象的大致形状及走向,可知函数图象的变化情况,可知方程f(x)=a有3个不同实根,求得实数a的值.

解答 解:(1)f′(x)=3x2-6=3(x2-2),
令f′(x)<0,解得:-$\sqrt{2}$<x<$\sqrt{2}$,
令f′(x)>0,解得:x>$\sqrt{2}$或x<-$\sqrt{2}$,
∴函数f(x)的递减区间是(-$\sqrt{2}$,$\sqrt{2}$),递增区间是(-∞,-$\sqrt{2}$)与($\sqrt{2}$,+∞);
(2)由(1)得当x=-$\sqrt{2}$时,有极大值5+4$\sqrt{2}$,当x=$\sqrt{2}$时,有极小值5-4$\sqrt{2}$;
(3)由(1)(2)的分析可知y=f(x)图象的大致形状及走向,
∴当5-4$\sqrt{2}$<a<5+4$\sqrt{2}$时,
直线y=a与y=f(x)的图象有3个不同交点,
即方程f(x)=a有三解,
∴5-4$\sqrt{2}$<a<5+4$\sqrt{2}$.

点评 考查利用导数研究函数的单调性和图象,体现了数形结合的思想方法.本题是一道含参数的函数、导数与方程的综合题,需要对参数进行分类讨论.属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知z是复数,z+2i与$\frac{z}{2-i}$均为实数.
(1)求复数z;
(2)复数(z+ai)2在复平面上对应的点在第一象限,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)在定义域R上的导函数为f'(x),若方程f'(x)=0无解,且f[f(x)-2017x]=2018,若函数g(x)=ax+$\frac{1}{2}{x^2}$+4lnx在定义域上与f(x)单调性相同,则实数a的取值范围是(  )
A.(-4,+∞)B.[-4,+∞)C.(-5,+∞)D.[-5,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.等比数列{an}的前n项和为Sn,若3S1,2S2,S3成等差数列,则等比数列{an}的公比为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.直线y=$\frac{1}{2}$x+b是曲线y=ln x(x>0)的一条切线,则 实数b的值为(  )
A.2B.ln 2+1C.ln 2-1D.ln 2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知复数z满足$\frac{z}{2+ai}$=$\frac{2}{1+i}$(a∈R),若z的实部是虚部的2倍,则a等于(  )
A.-2B.2C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若$tan(θ+\frac{π}{4})=3$,则cos2θ+sin2θ=(  )
A.$\frac{4}{5}$B.$\frac{6}{5}$C.$\frac{8}{5}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知随机变量X~B(5,0.2),Y=2X-1,则E(Y)=1,标准差σ(Y)=$\frac{4\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知数列{an}的首项a1=1,且满足an+1-an≤n•2n,an-an+2≤-(3n+2)•2n,则a2017=2015×22017+3.

查看答案和解析>>

同步练习册答案