精英家教网 > 高中数学 > 题目详情
5.已知z是复数,z+2i与$\frac{z}{2-i}$均为实数.
(1)求复数z;
(2)复数(z+ai)2在复平面上对应的点在第一象限,求实数a的取值范围.

分析 (1)设z=x+yi(x,y∈R),然后代入z+2i结合已知求出y的值,再代入$\frac{z}{2-i}$,利用复数代数形式的乘除运算化简结合已知可求出x的值,则复数z可求;
(2)把z=4-2y代入(z+ai)2化简结合已知条件列出不等式组,求解即可得答案.

解答 解:(1)设z=x+yi(x,y∈R),
则z+2i=x+(y+2)i为实数,
∴y=-2.
∵$\frac{z}{2-i}$=$\frac{x-2i}{2-i}=\frac{(x-2i)(2+i)}{(2-i)(2+i)}=\frac{2x+2+(x-4)i}{5}$=$\frac{2x+2}{5}+\frac{x-4}{5}i$为实数,
∴$\frac{x-4}{5}=0$,解得x=4.
则z=4-2y;
(2)∵(z+ai)2=(4-2y+ai)2=(12+4a-a2)+8(a-2)i在第一象限,
∴$\left\{\begin{array}{l}{12+4a-{a}^{2}>0}\\{8(a-2)>0}\end{array}\right.$,
解得2<a<6.

点评 本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.对于某个给定的函数f(x),称方程f(x)=x的根为函数f(x)的不动点,若二次函数f(x)=ax2+bx+c(a>0)有两个不动点x1,x2,且${x_2}-{x_1}>\frac{1}{a}$,当t<x1时,f(t)与x1的大小关系为(  )
A.f(t)>x1B.f(t)≥x1C.f(t)<x1D.f(t)≤x1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某数学兴趣小组35名学生的成绩的茎叶图如图所示,若将学生的成绩由高到低编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[70,85)上的学生人数是5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知圆C的半径为2,圆心在x轴的正半轴上,直线3x+4y+4=0与圆C相切,则圆C的一般方程是x2+y2-4x=0;.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知a>0,($\frac{a}{\sqrt{x}}$-x)6展开式的常数项为240,则${∫}_{-a}^{a}$(x2+x+$\sqrt{4-{x}^{2}}$)dx=$\frac{16}{3}$+2π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若函数f(x)的导函数f′(x)=x2-3x-10,则函数f(1-x)的单调递增区间是(  )
A.($\frac{3}{2}$,+∞)B.(-$\frac{1}{2}$,+∞)C.(-4,3)D.(-∞,-4)和(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=ax2lnx-(x-1)(x>0),曲线y=f(x)在点(1,0)处的切线方程为y=0.
(1)求证:当x≥1时,f(x)≥(x-1)2; 
(2)若当x≥1时,f(x)≥m(x-1)2恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知向量$\overrightarrow{m}$=(2sinθ,sinθ-cosθ),$\overrightarrow n=(cosθ,-2-m)$,函数$f(θ)=\overrightarrow m•\overrightarrow n$的最小值为g(m).
(1)当m=2时,求g(m)的值;
(2)求g(m);
(3)已知函数h(x)为定义在R上的增函数,且对任意的x1,x2都满足h(x1+x2)=h(x1)+h(x2),问:是否存在这样的实数m,使不等式$h(\frac{4}{sinθ-cosθ})+h(2m+3)>h(f(θ))$对所有$θ∈(\frac{π}{4},π)$恒成立.若存在,求出m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=x3-6x+5,x∈R
(1)求f(x)的单调区间;
(2)求f(x)的极大值和极小值;
(3)若关于x的方程f(x)=a有三个不同的实数根,求实数a的取值范围.

查看答案和解析>>

同步练习册答案