【题目】如图,在四棱锥
中,底面
是直角梯形,
,
,又
,
,
,
.
![]()
(1)求证:
平面
;
(2)求
与平面
所成角的余弦值;
(3)求二面角
的余弦值.
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C的参数方程为
(
为参数),直线
的参数方程为
(
为参数).在以坐标原点
为极点,
轴的正半轴为极轴的极坐标系中,过极点
的射线与曲线
相交于不同于极点的点
,且点
的极坐标为
,其中
.
(1)求
的值;
(2)若射线
与直线
相交于点
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,直线
的参数方程为
(
为参数,
),以
为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
的直角坐标方程及直线
在
轴正半轴及
轴正半轴截距相等时的直角坐标方程;
(2)若
,设直线
与曲线
交于不同的两点
、
,点
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的多面体中,AD⊥平面PDC,四边形ABCD为平行四边形,E为AD的中点,F为线段PB上的一点,∠CDP=120°,AD=3,AP=5,
.
![]()
(Ⅰ)试确定点F的位置,使得直线EF∥平面PDC;
(Ⅱ)若PB=3BF,求直线AF与平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,则下列判断正确的是( )
A.函数
的最小正周期为
,在
上单调递增
B.函数
的最小正周期为
,在
上单调递增
C.函数
的最小正周期为
,在
上单调递增
D.函数
的最小正周期为
,在
上单调递增
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,平面
平面
,四边形
是梯形,
//
,四边形
是矩形,
,
,
是
上的动点.
![]()
(1)试确定
点的位置,使
//平面
;
(2)在(1)的条件下,求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数),若以该直角坐标系的原点为极点,
轴的正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
(其中
为常数).
(1)求曲线
和
的直角坐标方程;
(2)若曲线
和
有且仅有一个公共点,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
,一动圆与直线
相切且与圆
外切.
(1)求动圆圆心
的轨迹
的方程;
(2)若经过定点
的直线
与曲线
交于
两点,
是线段
的中点,过
作
轴的平行线与曲线
相交于点
,试问是否存在直线
,使得
,若存在,求出直线
的方程,若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com