精英家教网 > 高中数学 > 题目详情
17.若${({x^2}-\frac{2}{x})^n}$的二项展开式中,所有项的二项式系数和为64,则该展开式中的常数项为240(用数字作答).

分析 由二项式系数的性质结合已知求得n,写出二项展开式的通项,再由x的指数等于0求得r值,则展开式中的常数项可求.

解答 解:∵${({x^2}-\frac{2}{x})^n}$的二项展开式中,所有项的二项式系数和为64,∴2n=64,即n=6.
则${({x^2}-\frac{2}{x})^n}$=$({x}^{2}-\frac{2}{x})^{6}$,
由${T}_{r+1}={C}_{6}^{r}{(x}^{2})^{6-r}•(-\frac{2}{x})^{r}$=$(-2)^{r}•{C}_{6}^{r}•{x}^{12-3r}$.
令12-3r=0,得r=4.
∴展开式中的常数项为$(-2)^{4}•{C}_{6}^{4}=240$.
故答案为:240.

点评 本题考查二项式定理的应用,考查了二项式系数的性质,关键是对二项展开式通项的记忆与运用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.如图,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{6}}{3}$,过点A(0,-b)和B(a,0)的直线与原点的距离为$\frac{\sqrt{3}}{2}$.已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C,D两点.存在k的值,使以CD为直径的圆过E点,则k=(  )
A.$\frac{7}{6}$B.-$\frac{7}{6}$C.3D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.集合A={1,2,3,…19,20},从集合A中任选3个不同的元素组成等差数列,这样的等差数列有180个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设同时满足条件:①$\frac{{b}_{n}+{b}_{n+2}}{2}$≥bn+1;②bn≤M(n∈N*,M是与无关的常数)的无穷数列{bn}叫“宏实”数列.已知数列{an}的前项和Sn满足:Sn=$\frac{a}{a-1}$(an-1)(a为常数,且a≠0,a≠1).
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=$\frac{2{S}_{n}}{{a}_{n}}$+1,若数列{bn}为等比数列,求a的值,并证明此时{$\frac{1}{{b}_{n}}$}为“宏实”数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知命题p:?x∈R,x-2>lgx,命题q:?x>-1,ex>ln(x+1),则(  )
A.命题p∨q是假命题B.命题p∧q是真命题
C.命题p∧(¬q)是真命题D.命题p∨(¬q)是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=$\sqrt{2}$sin(ωx+φ)(x∈R,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则f(0)的值是(  )
A.-$\frac{\sqrt{6}}{2}$B.-$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{6}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设x,y满足约束条件$\left\{\begin{array}{l}{x-y+2≥0}\\{2x+y-5≥0}\\{2x-y-3≤0}\end{array}\right.$,若使函数Z=ax+by(2b>a>0)的最大值为10,求ab的最大值(  )
A.$\frac{25}{7}$B.$\frac{5}{7}$C.5D.25

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.点(0,2)关于直线x+2y-1=0的对称点是(  )
A.(-2,0)B.(-1,0)C.$(-\frac{6}{5},-\frac{2}{5})$D.(0,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在单位圆中,面积为2的扇形所对的圆心角为(  )弧度.
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案